【題目】如圖所示的多面體的底面為直角梯形,四邊形
為矩形,且
,
,
,
,
,
,
分別為
,
,
的中點.
(1)求證:平面
;
(2)求直線與平面
所成角的余弦值.
【答案】(1)答案見解析.(2)
【解析】
(1)先證明平面
,可得
,取
中點
,利用等腰三角形的性質(zhì)可得
,由線面垂直的判定即可得證;
(2)建立空間直角坐標(biāo)系,求出各點坐標(biāo)后,再求出平面的一個法向量
和直線
的方向向量
,求出兩向量夾角的余弦值后利用平方關(guān)系即可得解.
(1)證明:,
分別為
,
的中點,
,
四邊形
為矩形,
,
又,
,
,
平面
,
平面
,
平面
,
,
取中點
,連接
,
,
,則
,
點
,
,
,
同在平面
內(nèi).
在中,
,
,
為
中點,
,
又,
,
平面
,
平面
.
(2)由(1)知,
,
三條直線兩兩垂直且交于點
,以
為原點,
,
,
分別為
,
,
軸,建立空間直角坐標(biāo)系,如圖.
則,
,
,
,
,
分別為
,
中點,可得
,
,
,
,
,
設(shè)平面的一個法向量為
,則
,即
,
令,可得
,
,
,
所以.
所以與平面
所成角的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電影《厲害了,我的國》于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標(biāo)識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進(jìn)行猜測:
甲說:第1個盒子里放的是,第3個盒子里放的是
乙說:第2個盒子里放的是,第3個盒子里放的是
丙說:第4個盒子里放的是,第2個盒子里放的是
丁說:第4個盒子里放的是,第3個盒子里放的是
小明說:“四位朋友你們都只說對了一半”
可以預(yù)測,第4個盒子里放的電影票為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的
萬件提升到2018年的
億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于
)收費(fèi)
元,續(xù)重
元
(不足
按
算). (如:一個包裹重量為
則需支付首付
元,續(xù)重
元,一共
元快遞費(fèi)用)
(1)若你有三件禮物重量分別為
,要將三個禮物分成兩個包裹寄出(如:
合為一個包裹,
一個包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)為了解該快遞點2019年的攬件情況,在2019年內(nèi)隨機(jī)抽查了天的日攬收包裹數(shù)(單位:件),得到如下表格:
包裹數(shù)(單位:件) | ||||
天數(shù)(天) |
現(xiàn)用這天的日攬收包裹數(shù)估計該快遞點2019年的日攬收包裏數(shù).若從2019年任取
天,記這
天中日攬收包裹數(shù)超過
件的天數(shù)為隨機(jī)變量
求
的分布列和期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,直線
的方程為
.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線
、直線
分別交于
、
兩點(
異于極點
),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.
組別 | 分組 | 頻數(shù) | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
(Ⅰ)從這20人中成績?yōu)椤皟?yōu)秀”的員工中任取2人,求恰有1人的分?jǐn)?shù)為96的概率;
(Ⅱ)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖估計所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在的平面與正三角形
所在的平面互相垂直,
為
的中點,連接
.
(1)證明:平面平面
;
(2)若直線與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,
省某調(diào)查機(jī)構(gòu)從該省抽取了
個城市,分別收集和分析了網(wǎng)約車的
兩項指標(biāo)數(shù)
,數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| |||||
|
經(jīng)計算得:
(1)試求與
間的相關(guān)系數(shù)
,并利用
說明
與
是否具有較強(qiáng)的線性相關(guān)關(guān)系(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)立關(guān)于
的回歸方程,并預(yù)測當(dāng)
指標(biāo)數(shù)為
時,
指標(biāo)數(shù)的估計值.
附:相關(guān)公式:,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為
(
).設(shè)
與
相交于點
,
與
相交于點
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是直線
上的動點,過點
的直線
、
與拋物線
相切,切點分別是
、
.
(1)證明:直線過定點;
(2)以為直徑的圓過點
,求點
的坐標(biāo)及圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com