日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點(diǎn)O是已知線段AB上一點(diǎn),以O(shè)A為半徑的⊙O交線段AB于點(diǎn)C,以線段OB為直徑的圓與⊙O的一個(gè)交點(diǎn)為D,過(guò)點(diǎn)A作AB的垂線交BD的延長(zhǎng)線于點(diǎn)M.
          (1)求證:BD是⊙O的切線;
          (2)若BC,BD的長(zhǎng)度是關(guān)于x的方程x2-6x+8=0的兩個(gè)根,求⊙O的半徑;
          (3)在上述條件下,求線段MD的長(zhǎng).
          【答案】分析:(1)連接OD,欲證BD是⊙O的切線,只需證明OD⊥BM,根據(jù)直徑所對(duì)的圓周角是直角即可證明;
          (2)根據(jù)方程的兩個(gè)根確定BC,BD的長(zhǎng),再根據(jù)切割線定理求得圓的半徑即可;
          (3)根據(jù)切線長(zhǎng)定理和勾股定理列方程計(jì)算即得.
          解答:(1)證明:連接OD.
          ∵OB是直徑,
          ∴∠ODB=90°,
          ∴BD是圓的切線.
          (2)解:求得方程的兩個(gè)根分別是x=2或x=4,
          則BC=2,BD=4;
          ∵BD2=BC•BA,
          ∴BA=8,
          ∴2OC=BA-BC=8-2=6.
          ∴OC=3
          ∴圓O的半徑是3.
          (3)設(shè)MD=x,則MA=x.
          根據(jù)(2)得:AB=8.
          根據(jù)勾股定理,得x2+82=(x+4)2
          ∴x=6.
          線段MD的長(zhǎng)是6
          點(diǎn)評(píng):此題綜合運(yùn)用了圓周角定理的推論、切線的性質(zhì)定理及其判定定理、勾股定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知A,B 分別為曲線C:
          x2
          a2
          +y2=1(y≥0,a>0)與x軸的左、右兩個(gè)交點(diǎn),直線l過(guò)點(diǎn)B,且與x軸垂直,S為l上異于點(diǎn)B的一點(diǎn),連接AS交曲線C于點(diǎn)T.
          (1)若曲線C為半圓,點(diǎn)T為圓弧
          AB
          的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);
          (2)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問(wèn):是否存在a,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          14、如圖,點(diǎn)O是已知線段AB上一點(diǎn),以O(shè)A為半徑的⊙O交線段AB于點(diǎn)C,以線段OB為直徑的圓與⊙O的一個(gè)交點(diǎn)為D,過(guò)點(diǎn)A作AB的垂線交BD的延長(zhǎng)線于點(diǎn)M.
          (1)求證:BD是⊙O的切線;
          (2)若BC,BD的長(zhǎng)度是關(guān)于x的方程x2-6x+8=0的兩個(gè)根,求⊙O的半徑;
          (3)在上述條件下,求線段MD的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009福建卷理)(本小題滿分13分)

          已知A,B 分別為曲線C: +=1(y0,a>0)與x軸

          的左、右兩個(gè)交點(diǎn),直線過(guò)點(diǎn)B,且與軸垂直,S為

          異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.

          (1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);

          (II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問(wèn):是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由。                                  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          如圖,點(diǎn)O是已知線段AB上一點(diǎn),以O(shè)A為半徑的⊙O交線段AB于點(diǎn)C,以線段OB為直徑的圓與⊙O的一個(gè)交點(diǎn)為D,過(guò)點(diǎn)A作AB的垂線交BD的延長(zhǎng)線于點(diǎn)M.
          (1)求證:BD是⊙O的切線;
          (2)若BC,BD的長(zhǎng)度是關(guān)于x的方程x2-6x+8=0的兩個(gè)根,求⊙O的半徑;
          (3)在上述條件下,求線段MD的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案