日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知A,B 分別為曲線C:
          x2
          a2
          +y2=1(y≥0,a>0)與x軸的左、右兩個交點,直線l過點B,且與x軸垂直,S為l上異于點B的一點,連接AS交曲線C于點T.
          (1)若曲線C為半圓,點T為圓弧
          AB
          的三等分點,試求出點S的坐標;
          (2)如圖,點M是以SB為直徑的圓與線段TB的交點,試問:是否存在a,使得O,M,S三點共線?若存在,求出a的值,若不存在,請說明理由.
          分析:(1)先由曲線C為半圓時得到a=1,再由點T為圓弧
          AB
          的三等分點得∠BOT=60°或120°,再對每一種情況下利用解三角的方法分別求點S的坐標即可;
          (II)先把直線AS的方程與曲線方程聯(lián)立,求出點T的坐標以及kBT,進而求得kSM;以及直線SM的方程,再利用O在直線SM上即可求出a的值.
          解答:解:(Ⅰ)當曲線C為半圓時,a=1,
          由點T為圓弧
          AB
          的三等分點得∠BOT=60°或120°.┉┉(1分)
          (1)當∠BOT=60°時,∠SAB=30°.
          又AB=2,故在△SAE中,有SB=AB•tan30°=
          2
          3
          3
          ,∴s(1,
          2
          3
          3
          );┉┉(3分)
          (2)當∠BOT=120°時,同理可求得點S的坐標為(1,2
          3
          ),
          綜上,s(1,
          2
          3
          3
          )或s(1,2
          3
          ).┉┉(5分)
          (Ⅱ)假設存在a,使得O,M,S三點共線.
          由于點M在以SB為直徑的圓上,故SM⊥BT.
          顯然,直線AS的斜率k存在且K>0,可設直線AS的方程為y=k(x+a)
          x2
          a2
          +y2=1
          y=k(x+a)
          ?(1+a2k2)x2+2a3k2x+a4k2-a2=0.
          設點T(xT,yT),則有xT• (-a)=
          a4k2-a2
          1+a2k2
          ,
          故xT=
          a-a3k2
          1+a2k2
          ?yT=k(xT+a )=
          2ak
          1+a2k2
          ,故T(
          a-a3k2
          1+a2k2
          ,
          2ak
          1+a2k2

          又B(a,0)∴kBT=
          yT
          xT-a
          =-
          1
          a2k
          ,kSM=a2k.
          x=a
          y=k(x+a)
          ?S(a,2ak),所直線SM的方程為y-2ak=a2k(x-a)
          O,S,M三點共線當且僅當O在直線SM上,即2ak=a2ka.
          又a>0,k>0?a=
          2
          ,
          故存在a=
          2
          ,使得O,M,S三點共線.
          點評:本題主要考查直線和圓相切,直線的方程,三點共線和圓的幾何性質(zhì)等基礎知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)和數(shù)形結(jié)合的數(shù)學思想,考查解決問題的能力和運算能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2分別為雙曲
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左、右焦點,P為雙曲線左支上任一點,若
          |PF2|2
          |PF1|
          的最小值為8a,則雙曲線的離心率e的取值范圍是(  )
          A、(1,+∞)
          B、(0,3]
          C、(1,3]
          D、(0,2]

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年陜西省榆林市神木中學高三(上)數(shù)學寒假作業(yè)1(理科)(解析版) 題型:選擇題

          已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
          A.(1,+∞)
          B.(0,3]
          C.(1,3]
          D.(0,2]

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年新疆烏魯木齊市高三(上)期末數(shù)學試卷(解析版) 題型:選擇題

          已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
          A.(1,+∞)
          B.(0,3]
          C.(1,3]
          D.(0,2]

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年陜西省西安市西工大附中高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

          已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
          A.(1,+∞)
          B.(0,3]
          C.(1,3]
          D.(0,2]

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年陜西省西安市西工大附中高考數(shù)學四模試卷(理科)(解析版) 題型:選擇題

          已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
          A.(1,+∞)
          B.(0,3]
          C.(1,3]
          D.(0,2]

          查看答案和解析>>

          同步練習冊答案