日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】7屆世界軍人運動會于20191018日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項,共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運會順利召開,特招聘了3萬名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15人,并根據(jù)調(diào)查結果畫出如所示的頻率分布直方圖:

          1)求的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);

          2)本次軍運會志愿者主要通過直接到武漢軍運會執(zhí)委會志愿者部現(xiàn)場報名和登錄第七屆世界軍運會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡兩種方式報名調(diào)查.這100位志愿者的報名方式部分數(shù)據(jù)如下表所示,完善下面的表格,通過計算說明能否在犯錯誤的概率不超過0.001的前提下,認為選擇哪種報名方式與性別有關系?

          男性

          女性

          總計

          現(xiàn)場報名

          50

          網(wǎng)絡報名

          31

          總計

          50

          參考公式及數(shù)據(jù):,其中.

          0.05

          0.01

          0.005

          0.001

          3.841

          6.635

          7.879

          10.828

          【答案】1,34歲(2)見解析,不能在犯錯誤的概率不超過0.001的前提下,認為選擇哪種報名方式與性別有關系

          【解析】

          1)根據(jù)年齡在歲的人數(shù)即可求得該組的頻率,并由所有小矩形面積為1及中位數(shù),可得關于的方程組,解方程即可確定的值;進而由頻率分布直方圖中平均數(shù)公式即可求得平均值;

          2)根據(jù)題意可完善列聯(lián)表,由列聯(lián)表代入公式即可計算得,結合臨界值,即可作判斷.

          1)∵志愿者年齡在內(nèi)的人數(shù)為15人,

          ∴志愿者年齡在內(nèi)的頻率為;

          由頻率分布直方圖得:

          化簡得:.①

          由中位數(shù)為34可得:,

          化簡得:,②

          由①②解得:,

          所以志愿者的平均年齡為:

          (歲).

          2)根據(jù)題意得列聯(lián)表:

          男性

          女性

          總計

          現(xiàn)場報名

          19

          31

          50

          網(wǎng)絡報名

          31

          19

          50

          總計

          50

          50

          100

          故不能在犯錯誤的概率不超過0.001的前提下,認為選擇哪種報名方式與性別有關系.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓,圓,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

          1)求曲線C的方程;

          2)設不經(jīng)過點的直線l與曲線C相交于AB兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】直角坐標系xOy中,已知MN是圓C:(x2)2+(y3)2=2的一條弦,且CMCN,PMN的中點.當弦MN在圓C上運動時,直線lxy5=0上總存在兩點A,B,使得恒成立,則線段AB長度的最小值是_____.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】蒙日圓涉及的是幾何學中的一個著名定理,該定理的內(nèi)容為:橢圓上兩條互相垂直的切線的交點必在一個與橢圓同心的圓上,該圓稱為原橢圓的蒙日圓,若橢圓的蒙日圓為,則

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,正方體的棱長為4,點EF為棱CD、的中點.

          1)求證:平面

          2)求直線與平面ACF所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓()的右焦點為,離心率為.直線過點且不平行于坐標軸,有兩個交點,線段的中點為.

          1)求橢圓的方程;

          2)證明:直線的斜率與的斜率的乘積為定值;

          3)延長線段與橢圓交于點,若四邊形為平行四邊形,求此時直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左、右焦點為,,上、下頂點為,,四邊形是面積為2的正方形.

          1)求橢圓的標準方程;

          2)已知點,過點的直線與橢圓交于,兩點,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某學校開設了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學經(jīng)訓練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設小明同學每次射擊的結果相互獨立.現(xiàn)對小明同學進行以上三次射擊的考核.

          1)求小明同學恰好命中一次的概率;

          2)求小明同學獲得總分的分布列及數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】2020年初,新冠病毒肺炎(COVID19)疫情在武漢爆發(fā),并以極快的速度在全國傳播開來.因該病毒暫無臨床特效藥可用,因此防控難度極大.湖北某地防疫防控部門決定進行全面入戶排查4類人員:新冠患者、疑似患者、普通感冒發(fā)熱者和新冠密切接觸者,過程中排查到一戶5口之家被確認為新冠肺炎密切接觸者,按要求進一步對該5名成員逐一進行核糖核酸檢測,若出現(xiàn)陽性,則該家庭定義為感染高危戶,設該家庭每個成員檢測呈陽性的概率相同均為,且相互獨立,該家庭至少檢測了4人才能確定為感染高危戶的概率為,當時,最大,此時

          A.B.C.D.

          查看答案和解析>>

          同步練習冊答案