【題目】如圖,正方體的棱長為4,點E、F為棱CD、
的中點.
(1)求證:平面
;
(2)求直線與平面ACF所成角的正弦值.
【答案】(1)證明見詳解;(2)
【解析】
(1)取的中點
,連接
、
,易證四邊形
是平行四邊形,從而證得
,則根據(jù)線面平行的判定定理即可證明
平面
;
(2)以點為坐標(biāo)原點,分別以
、
、
所在直線為
、
、
軸,建立空間直角坐標(biāo)系.求出平面
的一個法向量,和
,利用空間向量法,即可求線
與平面
所成角的正弦值.
解:(1)證明:取的中點
,連接
、
,
易知,且,
四邊形
是平行四邊形,
,
又平面
,
平面
,
平面
;
(2)如圖所示,以點為坐標(biāo)原點,分別以
、
、
所在直線為、
、
軸,建立空間直角坐標(biāo)系,
則,
,
,
,
,
,
,
,
設(shè)為平面
的一個法向量,
則,即
令,得
,
故:與平面
所成角的正弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
與曲線
相交于
兩點,與
軸相交于點
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】陽馬和鱉臑(bienao)是《九章算術(shù)·商功》里對兩種錐體的稱謂.如圖所示,取一個長方體,按下圖斜割一分為二,得兩個模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個塹堵的一個頂點與相對的棱剖開,得四棱錐和三棱錐各一個,有一棱與底面垂直的四棱錐稱為陽馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐
)若將某長方體沿上述切割方法得到一個陽馬一個鱉臑,且該陽馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽馬和鱉臑的表面積之和為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖餐廳新店開業(yè),打算舉辦一次食品交易會,招待新老顧客試吃.項目經(jīng)理通過查閱最近次食品交易會參會人數(shù)
(萬人)與餐廳所用原材料數(shù)量
(袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù)(萬人) | |||||
原材料(袋) |
(1)根據(jù)所給組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)已知購買原材料的費用(元)與數(shù)量
(袋)的關(guān)系為
,投入使用的每袋原材料相應(yīng)的銷售收入為
元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有
萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤
銷售收入
原材料費用).
參考公式:,
.
參考數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項,329個小項,共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運會順利召開,特招聘了3萬名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15人,并根據(jù)調(diào)查結(jié)果畫出如所示的頻率分布直方圖:
(1)求,
的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)本次軍運會志愿者主要通過直接到武漢軍運會執(zhí)委會志愿者部現(xiàn)場報名和登錄第七屆世界軍運會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡(luò)兩種方式報名調(diào)查.這100位志愿者的報名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計算說明能否在犯錯誤的概率不超過0.001的前提下,認(rèn)為“選擇哪種報名方式與性別有關(guān)系”?
男性 | 女性 | 總計 | |
現(xiàn)場報名 | 50 | ||
網(wǎng)絡(luò)報名 | 31 | ||
總計 | 50 |
參考公式及數(shù)據(jù):,其中
.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有限個元素組成的集合,
,記集合
中的元素個數(shù)為
,即
.定義
,集合
中的元素個數(shù)記為
,當(dāng)
時,稱集合
具有性質(zhì)
.
(1),
,判斷集合
,
是否具有性質(zhì)
,并說明理由;
(2)設(shè)集合,
且
(
),若集合
具有性質(zhì)
,求
的最大值;
(3)設(shè)集合,其中數(shù)列
為等比數(shù)列,
(
)且公比為有理數(shù),判斷集合
是否具有性質(zhì)
并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校打算在長為1千米的主干道一側(cè)的一片區(qū)域內(nèi)臨時搭建一個強基計劃高校咨詢和宣傳臺,該區(qū)域由直角三角形區(qū)域
(
為直角)和以
為直徑的半圓形區(qū)域組成,點
(異于
,
)為半圓弧上一點,點
在線段
上,且滿足
.已知
,設(shè)
,且
.初步設(shè)想把咨詢臺安排在線段
,
上,把宣傳海報懸掛在弧
和線段
上.
(1)若為了讓學(xué)生獲得更多的咨詢機(jī)會,讓更多的省內(nèi)高校參展,打算讓最大,求該最大值;
(2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報,打算讓弧和線段
的長度之和最大,求此時的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ為常數(shù).
(1)證明:Sn+1=2Sn+λ;
(2)是否存在實數(shù)λ,使得數(shù)列{an}為等比數(shù)列,若存在,求出λ;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com