【題目】下列函數(shù)為奇函數(shù)的是( )
A.y=x3+3x2
B.y=
C.y=xsin x
D.y=
【答案】D
【解析】依題意,對于選項(xiàng)A,注意到當(dāng)x=-1時(shí),y=2;當(dāng)x=1時(shí),y=4,因此函數(shù)y=x3+3x2不是奇函數(shù).對于選項(xiàng)B,注意到當(dāng)x=0時(shí),y=1≠0,因此函數(shù)y= 不是奇函數(shù).對于選項(xiàng)C,注意到當(dāng)x=-
時(shí),y=
;當(dāng)x=
時(shí),y=
,因此函數(shù)y=xsin x不是奇函數(shù).對于選項(xiàng)D,由
>0得-3<x<3,即函數(shù)y=log2
的定義域是(-3,3),該數(shù)集是關(guān)于原點(diǎn)對稱的集合,且log2
+log2
=log21=0,即log2
=-log2
,因此函數(shù)y=log2
是奇函數(shù).綜上所述, 故答案為:D.
利用奇函數(shù)的定義f(-x)=-f(x),以及奇偶函數(shù)的定義域關(guān)于原點(diǎn)對稱,逐一判斷即可得出結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,
,對于給定的非零實(shí)數(shù)
,總存在非零常數(shù)
,使得定義域
內(nèi)的任意實(shí)數(shù)
,都有
恒成立,此時(shí)
為
的類周期,函數(shù)
是
上的
級類周期函數(shù).若函數(shù)
是定義在區(qū)間
內(nèi)的2級類周期函數(shù),且
,當(dāng)
時(shí),
函數(shù)
.若
,
,使
成立,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A,B,C的對邊分別a,b,c,已知 ,
,且
∥
(1)證明sinBsinC=sinA;
(2)若a2+c2﹣b2= ac,求tanC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln x-bx2 , a,b∈R.
(1)若f(x)在x=1處與直線y=- 相切,求a,b的值;
(2)在(1)的條件下,求f(x)在 上的最大值;
(3)若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中
,
為常數(shù),
為自然對數(shù)的底數(shù)).
(1)討論函數(shù) 的單調(diào)性;
(2)設(shè)曲線 在
處的切線為
,當(dāng)
時(shí),求直線
在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且點(diǎn)
滿足條件
,若點(diǎn)
關(guān)于直線
的對稱點(diǎn)是
,則線段
的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的四個(gè)頂點(diǎn)組成的四邊形的面積為
,且經(jīng)過點(diǎn)
.
(1)求橢圓 的方程;
(2)若橢圓 的下頂點(diǎn)為
,如圖所示,點(diǎn)
為直線
上的一個(gè)動(dòng)點(diǎn),過橢圓
的右焦點(diǎn)
的直線
垂直于
,且與
交于
兩點(diǎn),與
交于點(diǎn)
,四邊形
和
的面積分別為
.求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com