已知m,t∈R,函數(shù)f (x) =(x - t)3+m.
(I)當(dāng)t =1時,
(i)若f (1) =1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3—1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y= f (x)在其圖象上的兩點A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線分別為l1、l2.若直線l1與l2平行,試探究點A與點B的關(guān)系,并證明你的結(jié)論.
解:(Ⅰ)(i)因為,所以
, 1分
則, 而
恒成立,
所以函數(shù)的單調(diào)遞增區(qū)間為
. 4分
(ii)不等式在區(qū)間
上有解,
即 不等式在區(qū)間
上有解,
即 不等式在區(qū)間
上有解,
等價于在區(qū)間
上的最小值, 6分
因為時,
,
所以的取值范圍是
. 9分
(Ⅱ)因為的對稱中心為
,
而可以由
經(jīng)平移得到,
所以的對稱中心為
,故合情猜測,若直線
與
平行,則點
與點
關(guān)于點
對稱. 10分
對猜想證明如下:
因為
所以
所以,,
的斜率分別為
,
.
又直線與
平行,所以
,即
,
因為,
所以,, 12分
從而,
所以.
又由上
所以點關(guān)于點(
對稱.
故直線與
平行時,點
與點
關(guān)于點
對稱. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測文科數(shù)學(xué) 題型:解答題
(本小題滿分1 4分)已知m,t∈R,函數(shù)f (x) =(x - t)3+m.
(I)當(dāng)t =1時,
(i)若f (1) =1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3—1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y= f (x)在其圖象上的兩點A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線
分別為l1、l2.若直線l1與l2平行,試探究點A與點B的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com