【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制.已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì),按照
的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的
的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績是及格以上等級的概率;
(3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,記表示抽取的3名學(xué)生中優(yōu)秀等級的學(xué)生人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
【答案】(1) ;(2)
;(3)答案見解析.
【解析】試題分析:
(1) 由題意可知,樣本容量,由頻率分布直方圖中小長方形面積之和為1可得
.
(2)由題意可知,不及格的概率為0.1,由對立事件概率公式可得至少有1人成績是及格以上等級的概率為;
(3)由題意可知原始成績在80分以上的學(xué)生有人,優(yōu)秀等級的學(xué)生有3人,則
的取值可為0,1,2,3;計(jì)算相應(yīng)的概率值可得
,
,
,
,據(jù)此列出分布列,計(jì)算可得
的數(shù)學(xué)期望為
.
試題解析:
(1)由題意可知,樣本容量,
,
∴.
(2)不及格的概率為0.1,設(shè)至少有1人成績是及格以上等級為事件,∴
,故至少有1人成績是及格以上等級的概率為
;
(3)原始成績在80分以上的學(xué)生有人,優(yōu)秀等級的學(xué)生有3人,
∴的取值可為0,1,2,3;
∴,
,
,
,
∴的分布列為
0 | 1 | 2 | 3 | |
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)(實(shí)數(shù)
、
為常數(shù)),且滿足
.
(1)求函數(shù)的解析式;
(2)試判斷函數(shù)在區(qū)間
上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;
(3)當(dāng)時(shí),函數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后拋擲兩枚骰子,設(shè)出現(xiàn)的點(diǎn)數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為半圓
的直徑,點(diǎn)
是半圓弧上的兩點(diǎn),
,
.曲線
經(jīng)過點(diǎn)
,且曲線
上任意點(diǎn)
滿足:
為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過點(diǎn)的直線
與曲線
交于不同的兩點(diǎn)
,求
面積最大時(shí)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,
,底面為梯形,
且
平面
.
(1)證明:平面平面
;
(2)當(dāng)異面直線與
所成角為
時(shí),求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
為自然對數(shù)的底數(shù),
.
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是棱長為2的正方體
的棱
的中點(diǎn),點(diǎn)
在面
所在的平面內(nèi),若平面
分別與平面
和平面
所成的銳二面角相等,則點(diǎn)
到點(diǎn)
的最短距離是( )
A. B.
C. 1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為
(萬元),其中固定成本為
萬元,并且每生產(chǎn)
百臺的生產(chǎn)成本為
萬元(總成本
固定成本
生產(chǎn)成本).銷售收入
(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤
銷售收入
總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com