【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準備在
上的一點
的正北方向的
處建一倉庫,并在公路同側(cè)建造一個正方形無頂中轉(zhuǎn)站
(其中邊
在
上),現(xiàn)從倉庫
向
和中轉(zhuǎn)站分別修兩條道路
,
,已知
,且
,設(shè)
,
.
(1)求關(guān)于
的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻(即正方形周長)造價為萬元
,兩條道路造價為
萬元
,問:
取何值時,該公司建中轉(zhuǎn)圍墻和兩條道路總造價
最低?
【答案】(1);(2)
的值為
時,該公司建中轉(zhuǎn)站圍墻和道路總造價
最低.
【解析】分析:(1)根據(jù)題意得,在
中,
,然后在
中利用余弦定理建立關(guān)于
的等式,進而得到
關(guān)于
的函數(shù)解析式;
(2)由(1)求出的函數(shù)關(guān)系式,結(jié)合題意得出總造價,令
,化簡得
,利用基本不等式,即可求解.
詳解:(1)∵,
,
∴
∵在中,
,
,
∴,可得
由于,得
在中,根據(jù)余弦定理
,
可得,
即,解得:
∵且
∴
可得關(guān)于
的函數(shù)解析式為
.
(2)由題意,可得總造價
令,則
當且僅當,即
時,M的最小值為49
此時,
答:當的值為
時,該公司建中轉(zhuǎn)站圍墻和道路總造價
最低.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實數(shù)a的取值范圍為( )
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),直線C2的方程為y=
,以O(shè)為極點,以x軸正半軸為極軸建立極坐標系,
(1)求曲線C1和直線C2的極坐標方程;
(2)若直線C2與曲線C1交于A,B兩點,求 +
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其函數(shù)圖象的相鄰兩條對稱軸之間的距離為
.
(1)求函數(shù)的解析式及對稱中心;
(2)將函數(shù)的圖象向左平移
個單位長度,再向上平移
個單位長度得到函數(shù)
的圖象,若關(guān)于
的方程
在區(qū)間
上有兩個不相等的實根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,設(shè)命題
:指數(shù)函數(shù)
≠
在
上單調(diào)遞增.命題
:函數(shù)
的定義域為
.若“
”為假,“
”為真,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點 分別是Δ
的邊
的中點,連接
.現(xiàn)將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.
(1)證明:
(2)證明:
(3)求平面 與平面
所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的兩個焦點分別為
,
,且經(jīng)過點
.
(Ⅰ)求橢圓 的標準方程;
(Ⅱ) 的頂點都在橢圓
上,其中
關(guān)于原點對稱,試問
能否為正三角形?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合…,
…,
,對于
…,
,B=(
…,
,定義A與B的差為
…
,A與B之間的距離為
.
(Ⅰ)若,求
;
(Ⅱ)證明:對任意,有
(i),且
;
(ii)三個數(shù)中至少有一個是偶數(shù);
(Ⅲ)對于…
…
,再定義一種A與B之間的運算,并寫出兩條該運算滿足的性質(zhì)(不需證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com