【題目】如圖,在四棱錐中,棱
底面
,且
,
,
,
是
的中點.
(1)求證: 平面
;
(2)求三棱錐的體積.
【答案】(1) 見解析(2)
【解析】試題分析:(1)取中點
,連接
,利用線面垂直的性質(zhì),得到
,進而得到
平面
,又根據(jù)三角形的性質(zhì),證得
,即可證明
平面
;
(2)解:由(1)知, 是三棱錐
的高,再利用三棱錐的體積公式,即可求解幾何體的體積.
試題解析:
(1)證明:取中點
,連接
,∵
底面
,
底面
,
,且
平面
,又
平面
,所以
.
又∵,H為PB的中點,
,又
,
平面
,在
中,
分別為
中點,
,又
,
,
,
∴四邊形
是平行四邊形,∴
、
平面
.
(2)解:由(1)知, ,∴
,又
,且
,
平面
,
是三棱錐
的高,又可知四邊形
為矩形,且
,
,所以
.
另解: 是
的中點,∴
到平面
的距離是
到平面
的距離的一半,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E,F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′分別交于M,N兩點,設(shè)BM=x,x∈[0,1],給出以下四個結(jié)論:
①平面MENF⊥平面BDD′B′;
②直線AC∥平面MENF始終成立;
③四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積V=h(x)為常數(shù);
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)每年暑假舉行“學(xué)科思維講座”活動,每場講座結(jié)束時,所有聽講這都要填寫一份問卷調(diào)查.2017年暑假某一天五場講座收到的問卷份數(shù)情況如下表:
學(xué)科 | 語文 | 數(shù)學(xué) | 英語 | 理綜 | 文綜 |
問卷份數(shù) |
用分層抽樣的方法從這一天的所有問卷中抽取份進行統(tǒng)計,結(jié)果如下表:
滿意 | 一般 | 不滿意 | |
語文 | |||
數(shù)學(xué) | 1 | ||
英語 | |||
理綜 | |||
文綜 |
(1)估計這次講座活動的總體滿意率;
(2)求聽數(shù)學(xué)講座的甲某的調(diào)查問卷被選中的概率;
(3)若想從調(diào)查問卷被選中且填寫不滿意的人中再隨機選出 人進行家訪,求這
人中選擇的是理綜講座的人數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為
(平方米)的
矩形健身場地,如圖,點
在
上,點
在
上,且
點在斜邊
上,已知
,
米,
米,
.設(shè)矩形
健身場地每平方米的造價為
元,再把矩形
以外(陰影部分)鋪上草坪,每平方米的造價為
元(
為正常數(shù))
(1)試用表示
,并求
的取值范圍;
(2)求總造價關(guān)于面積
的函數(shù)
;
(3)如何選取,使總造價
最低(不要求求出最低造價)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,底面為等腰直角三角形,
,
, 若
、
、
別是棱
、
、
的中點,則下列四個命題:
;
②三棱錐的外接球的表面積為
;
③三棱錐的體積為
;
④直線與平面
所成角為
其中正確的命題有__________.(把所有正確命題的序號填在答題卡上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系
有相同的長度單位,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線與直線
交于
、
兩點,且
點的坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線
的對稱軸與準(zhǔn)線的交點,點
為拋物線的焦點,
在拋物線上且滿足
,當(dāng)
取最大值時,點
恰好在以
,
為焦點的雙曲線上,則雙曲線的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在的人基本每天都離不開手機,許多人手機一旦不在身邊就不舒服,幾乎達到手機二十四小時不離身,這類人群被稱為“手機控”,這一群體在大學(xué)生中比較突出.為了調(diào)查大學(xué)生每天使用手機的時間,某調(diào)查公司針對某高校男生、女生各25名學(xué)生進行了調(diào)查,其中每天使用手機時間超過8小時的被稱為:“手機控”,否則被稱為“非手機控”.調(diào)查結(jié)果如下:
手機控 | 非手機控 | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
(1)將上面的列聯(lián)表補充完整,再判斷是否有99.5%的把握認(rèn)為“手機控”與性別有關(guān),說明你的理由;
(2)現(xiàn)從被調(diào)查的男生中按分層抽樣的方法選出5人,再從這5人中隨機選取3人參加座談會,記這3人中“手機控”的人數(shù)為,試求
的分布列與數(shù)學(xué)期望.
參考公式: ,其中
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com