日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某地區(qū)2010年至2016年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

          年 份

          2010

          2011

          2012

          2013

          2014

          2015

          2016

          年份代號(hào)t

          1

          2

          3

          4

          5

          6

          7

          人均純收入y

          2.9

          3.3

          3.6

          4.4

          4.8

          5.2

          5.9

          (1)求y關(guān)于t的回歸直線方程;

          (2)利用(1)中的回歸方程,分析2010年至2016年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2018年農(nóng)村居民家庭人均純收入.

          附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別

          【答案】(1);(2)6.8千元

          【解析】分析:(1)由題中所給的數(shù)據(jù)求得回歸方程即可;

          (2)結(jié)合回歸方程的預(yù)測(cè)作用和(1)中的結(jié)論整理計(jì)算即可求得最終結(jié)果.

          詳解(1)由所給數(shù)據(jù)計(jì)算得

          ,

          =(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,

          ,

          ,

          所求回歸方程

          (2)由(1)2010年至2016年該地區(qū)農(nóng)村居民家庭人均純收入逐年增加,平均每年增加0.5千元.

          將2018年的年份代號(hào)t=9代入(1)中的回歸方程,

          故預(yù)測(cè)該地區(qū)2018年農(nóng)村居民家庭人均純收入為6.8千元.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】12分)已知函數(shù)fx=

          1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

          2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) +(1﹣α) ,其中0<α< ,則n,m的大小關(guān)系為( )
          A.n<m
          B.n>m
          C.n=m
          D.不能確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三點(diǎn)O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足| + |= + )+2.
          (1)求曲線C的方程;
          (2)動(dòng)點(diǎn)Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為直線l:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (I)設(shè)的極值點(diǎn).求實(shí)數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;

          (II)證明:當(dāng) 時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有一位同學(xué)家里開了一個(gè)小賣部,他為了研究氣溫對(duì)熱茶銷售的影響,經(jīng)過(guò)統(tǒng)計(jì),得到一個(gè)賣出熱茶杯數(shù)與當(dāng)天氣溫的對(duì)比表如下:

          氣溫x/

          -5

          0

          4

          7

          12

          15

          19

          23

          27

          31

          36

          熱茶銷售杯數(shù)y/杯

          156

          150

          132

          128

          130

          116

          104

          89

          93

          76

          54

          (1)畫出散點(diǎn)圖;

          (2)你能從散點(diǎn)圖中發(fā)現(xiàn)氣溫與熱茶的銷售杯數(shù)之間關(guān)系的一般規(guī)律嗎?

          (3)如果近似成線性關(guān)系的話,請(qǐng)畫出一條直線來(lái)近似地表示這種線性關(guān)系;

          (4)試求出回歸直線方程;

          (5)利用(4)的回歸方程,若某天的氣溫是2 ,預(yù)測(cè)這一天賣出熱茶的杯數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0).已知(1,e)和(e, )都在橢圓上,其中e為橢圓的離心率.

          (1)求橢圓的方程;
          (2)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,AF2與BF1交于點(diǎn)P.
          (i)若AF1﹣BF2= ,求直線AF1的斜率;
          (ii)求證:PF1+PF2是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體中,點(diǎn)是四邊形的中心,關(guān)于直線,下列說(shuō)法正確的是( )

          A. B.

          C. 平面D. 平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

          (Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

          ( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為為圓上的任意一點(diǎn),求的取值范圍.

          【答案】(1);.

          (2).

          【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來(lái)求得取值范圍.

          試題解析】

          (Ⅰ)圓的參數(shù)方程為為參數(shù)).

          直線的直角坐標(biāo)方程為.

          (Ⅱ)由直線的方程可得點(diǎn),點(diǎn).

          設(shè)點(diǎn),則 .

          .

          由(Ⅰ)知,則 .

          因?yàn)?/span>,所以.

          型】解答
          結(jié)束】
          23

          【題目】選修4-5:不等式選講

          已知函數(shù), .

          (Ⅰ)若對(duì)于任意, 都滿足,求的值;

          (Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案