【題目】如圖是函數(shù)在區(qū)間
上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,縱坐標(biāo)不變
B. 向左平移至個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,縱坐標(biāo)不變
D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細(xì)過程;
(2)若在
上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(
),且曲線
在點
處的切線方程為
.
(1)求實數(shù)的值及函數(shù)
的最大值;
(2)當(dāng)時,記函數(shù)
的最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C1的參數(shù)方程為
(α為參數(shù)),以原點O為極點,x軸的正半軸為級軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程
;
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點,求點P到曲線C2上的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:只要
,必有
,則稱
具有性質(zhì)
.
(1)若具有性質(zhì)
,且
,
,求
;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列
是公比為正數(shù)的等比數(shù)列,
,
,
判斷
是否具有性質(zhì)
,并說明理由;
(3)設(shè)是無窮數(shù)列,已知
.求證:“對任意
都具有性質(zhì)
”的充要條件為“
是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點M的坐標(biāo)為,曲線C的方程為
;以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為
的直線l經(jīng)過點M.
(I)求直線l和曲線C的直角坐標(biāo)方程:
(II)若P為曲線C上任意一點,直線l和曲線C相交于A,B兩點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點M的坐標(biāo)為,曲線C的方程為
;以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為
的直線l經(jīng)過點M.
(I)求直線l和曲線C的直角坐標(biāo)方程:
(II)若P為曲線C上任意一點,直線l和曲線C相交于A,B兩點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為
,拋物線
上存在一點
到焦點
的距離等于
.
(1)求拋物線的方程;
(2)過點的直線
與拋物線
相交于
,
兩點(
,
兩點在
軸上方),點
關(guān)于
軸的對稱點為
,且
,求△
的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在D上的函數(shù),若對D中的任意兩數(shù)
),恒有
,則稱
為定義在D上的C函數(shù).
(1)試判斷函數(shù)是否為定義域上的C函數(shù),并說明理由;
(2)若函數(shù)是R上的奇函數(shù),試證明
不是R上的C函數(shù);
(3)設(shè)是定義在D上的函數(shù),若對任何實數(shù)
以及D中的任意兩數(shù)
),恒有
,則稱
為定義在D上的π函數(shù). 已知
是R上的π函數(shù),m是給定的正整數(shù),設(shè)
,且
,記
. 對于滿足條件的任意函數(shù)
,試求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com