已知橢圓經(jīng)過點(diǎn)
,離心率為
.
(1)求橢圓的方程;
(2)直線與橢圓
交于
兩點(diǎn),點(diǎn)
是橢圓
的右頂點(diǎn).直線
與直線
分別與
軸交于點(diǎn)
,試問以線段
為直徑的圓是否過
軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.
(1)橢圓的方程是
;(2)線段
為直徑的圓過
軸上的定點(diǎn)
.
解析試題分析:(1)求橢圓的方程,已知橢圓
經(jīng)過點(diǎn)
,離心率為
,故可用待定系數(shù)法,利用離心率可得
,利用過點(diǎn)
,可得
,再由
,即可解出
,從而得橢圓
的方程;(2)這是探索性命題,可假設(shè)以線段
為直徑的圓過
軸上的定點(diǎn)
,則
,故需表示出
的坐標(biāo),因?yàn)辄c(diǎn)
是橢圓
的右頂點(diǎn),所以點(diǎn)
,設(shè)
,分別寫出直線
與的
方程,得
的坐標(biāo),由
,得
,因此由
得
,則
式方程的根,利用根與系數(shù)關(guān)系得,
,
,代入
即可.
試題解析:(1)由題意得,解得
,
.
所以橢圓的方程是
. 4分
(2)以線段為直徑的圓過
軸上的定點(diǎn).
由得
.
設(shè),則有
,
.
又因?yàn)辄c(diǎn)是橢圓
的右頂點(diǎn),所以點(diǎn)
.
由題意可知直線的方程為
,故點(diǎn)
.
直線的方程為
,故點(diǎn)
.
若以線段為直徑的圓過
軸上的定點(diǎn)
,則等價(jià)于
恒成立.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/a/sty9e2.png" style="vertical-align:middle;" />,,
所以恒成立.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/d/h7bv.png" style="vertical-align:middle;" />,
,
所以.解得
.
故以線段為直徑的圓過
軸上的定點(diǎn)
. 14分
考點(diǎn):求橢
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線與拋物線
(常數(shù)
)相交于不同的兩點(diǎn)
、
,且
(
為定值),線段
的中點(diǎn)為
,與直線
平行的切線的切點(diǎn)為
(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(2)求的面積,證明
的面積與
、
無關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、
,再作與
、
平行的切線,切點(diǎn)分別為
、
,小張馬上寫出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知定點(diǎn)、
,動(dòng)點(diǎn)N滿足
(O為坐標(biāo)原點(diǎn)),
,
,
,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,
(ⅰ)設(shè)直線的斜率分別為
、
,求證:
為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以
為直徑的圓是否經(jīng)過定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)A(1,0)及圓,C為圓B上任意一點(diǎn),求AC垂直平分線與線段BC的交點(diǎn)P的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的離心率為
,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為
,
是橢圓上異于
的任意一點(diǎn),直線
分別交
軸于點(diǎn)
,若直線
與過點(diǎn)
的圓
相切,切點(diǎn)為
.證明:線段
的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知焦點(diǎn)在軸上的橢圓
經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使△
是以
為直角的直角三角形,若存在,求出
的值,若不存,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
,
兩點(diǎn),且
、
、
三點(diǎn)互不重合.
(1)求橢圓的方程;(2)求證:直線
,
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°,,求實(shí)數(shù)m;
(3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,直線
,
為平面上的動(dòng)點(diǎn),過點(diǎn)
作
的垂線,垂足為點(diǎn)
,且
.
(1)求動(dòng)點(diǎn)的軌跡曲線
的方程;
(2)設(shè)動(dòng)直線與曲線
相切于點(diǎn)
,且與直線
相交于點(diǎn)
,試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn)
,使得以
為直徑的圓恒過此定點(diǎn)
?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com