日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是
          A.16
          B.8
          C.4
          D.2

          【答案】C
          【解析】解:根據(jù)tan45°=tan(21°+24°)= =1 得到tan21°+tan24°=1﹣tan21°tan24°,
          可得tan21°+tan24°+tan21°tan24°=1
          同理得到tan22°+tan23°=1﹣tan22°tan23°,
          tan22°+tan23°+tan22°tan23°=1;
          (1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)
          =[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]
          =(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)
          =(1+1﹣tan24°tan21°+tan24°tan21°)(1+1﹣tan22°tan23°+tan22°tan23°)
          =4
          故選C.
          【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m,使得對(duì)于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),則稱f(x)為M上的m度低調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x﹣a2|﹣a2 , 且f(x)為R上的5度低調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的左頂點(diǎn)和上頂點(diǎn)分別為A、B,左、右焦點(diǎn)分別是F1 , F2 , 在線段AB上有且只有一個(gè)點(diǎn)P滿足PF1⊥PF2 , 則橢圓的離心率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓心為C的圓過點(diǎn)A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
          (1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)M(2,8)作圓的切線,求切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為常數(shù), ,函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).

          (1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求證: ;

          (2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)對(duì)于任意x∈R有 ,且當(dāng)x∈[﹣1,1]時(shí),f(x)=x2+1,則以下命題正確的是: ①函數(shù)數(shù)y=f(x)是周期為2的偶函數(shù);
          ②函數(shù)y=f(x)在[2,3]上單調(diào)遞增;
          ③函數(shù) 的最大值是4;
          ④若關(guān)于x的方程[f(x)]2﹣f(x)﹣m=0有實(shí)根,則實(shí)數(shù)m的范圍是[0,2];
          ⑤當(dāng)x1 , x2∈[1,3]時(shí),
          其中真命題的序號(hào)是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4 , 當(dāng)x1<x2<x3<x4時(shí)滿足f(x1)=f(x2)=f(x3)=f(x4),則x1x2x3x4的取值范圍是(
          A.(7,
          B.(21,
          C.[27,30)
          D.(27,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時(shí),f(x)= (1﹣x),則函數(shù)f(x)在(1,2)上(
          A.是減函數(shù),且f(x)>0
          B.是增函數(shù),且f(x)>0
          C.是增函數(shù),且f(x)<0
          D.是減函數(shù),且f(x)<0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點(diǎn)M,N分別為線段A1B,AC1的中點(diǎn).

          (1)求證:MN∥平面BB1C1C;
          (2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案