【題目】設(shè)函數(shù)的定義域為D,如果
,使得
成立,則稱函數(shù)
為“Ω函數(shù)”. 給出下列四個函數(shù):①
;②
;③
;④
, 則其中“Ω函數(shù)”共有( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:若x∈D,y∈D,使得f(x)=-f(y)成立,即等價為x∈D,y∈D,使得f(x)+f(y)=0成立.
A.函數(shù)的定義域為R,∵y=sinx是奇函數(shù),
∴f(-x)=-f(x),即f(x)+f(-x)=0,∴當(dāng)y=-x時,等式(x)+f(y)=0成立,∴A為“Ω函數(shù)”.
B.∵f(x)=2x>0,∴,則等式(x)+f(y)=0不成立,∴B不是“Ω函數(shù)”.
C.函數(shù)的定義域為{x|x≠1},由(x)+f(y)=0得,即
,
∴x+y-2=0,即y=2-x,當(dāng)x≠1時,y≠1,∴當(dāng)y=2-x時,等式(x)+f(y)=0成立,∴C為“Ω函數(shù)”.
D.函數(shù)的定義域為(0,+∞),由(x)+f(y)=0得lnx+lny=ln(xy)=0,即xy=1,即當(dāng)y= 時,等式(x)+f(y)=0成立,∴D為“Ω函數(shù)”.
綜上滿足條件的函數(shù)是A,C,D,共3個
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是 ( )
A. 多面體至少有四個面
B. 九棱柱有9條側(cè)棱,9個側(cè)面,側(cè)面為平行四邊形
C. 長方體、正方體都是棱柱
D. 三棱柱的側(cè)面為三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值是________,最小值是________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在
,
,使得成立
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h),試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
服用B藥的20位患者日平均增加的睡眠時間:
(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?
(Ⅱ)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在
,使
成立,則稱
為
的
不動點.已知函數(shù).
(1)當(dāng)時,求函數(shù)
的不動點;
(2)若對任意實數(shù),函數(shù)
恒有兩個相異的不動點,求
的取值范圍;
(3)在(2)的條件下,若f(x)的兩個不動點為,且
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將一塊閑置的直角三角形(其中)土地開發(fā)成公共綠地,設(shè)計時,要求綠地部分(圖中陰影部分)有公共綠地走道
,且兩邊是兩個關(guān)于走道
對稱的三角形(
和
),現(xiàn)考慮方便和綠地最大化原則,要求
點與
點不重合,
點落在邊
上,設(shè)
.
(1)若,綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民行走,設(shè)計時要求最短,求此時公共綠地走道
的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com