日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】各項為正數(shù)的數(shù)列如果滿足:存在實數(shù),對任意正整數(shù)n恒成立,且存在正整數(shù)n,使得成立,則稱數(shù)列為“緊密數(shù)列”,k稱為“緊密數(shù)列”的“緊密度”.已知數(shù)列的各項為正數(shù),前n項和為,且對任意正整數(shù)n,A,BC為常數(shù))恒成立.

          1)當,,時,

          ①求數(shù)列的通項公式;

          ②證明數(shù)列是“緊密度”為3的“緊密數(shù)列”;

          2)當時,已知數(shù)列和數(shù)列都為“緊密數(shù)列”,“緊密度”分別為,,且,,求實數(shù)B的取值范圍.

          【答案】1)①②見解析;(2

          【解析】

          1)利用公式得到是以首項為1,公差為2的等差數(shù)列,得到通項公式;計算恒成立,得到證明.

          2)根據(jù)遞推公式得到是以首項,公比的等比數(shù)列,考慮兩種情況,計算得到,根據(jù)解得答案.

          1)①當,,時,,

          時,,

          相減得:,

          整理得:,因為,則,

          即有,當時,,則

          是以首項為1,公差為2的等差數(shù)列,則

          ,得隨著的增大而減小,

          則對任意正整數(shù)n恒成立,且存在,使得

          則數(shù)列是“緊密度”3的“緊密數(shù)列”.

          2)當時,,,相減得:,

          ,則上式右端中,與矛盾;

          ,則上式左端,與矛盾,則,

          為常數(shù),即是以首項,公比的等比數(shù)列.

          因為數(shù)列為“緊密數(shù)列”,則, 所以,又

          時,,對任意正整數(shù)恒成立,

          且存在正整數(shù),使得,所以數(shù)列的“緊密度”為,

          ,即,

          此時,的增大而減小,

          所以,對任意正整數(shù)恒成立,

          且當時,,所以數(shù)列的“緊密度”為

          ,與矛盾,不成立;

          時,,對任意正整數(shù)恒成立,

          且存在正整數(shù),使得,

          則此時的“緊密度”為,即

          隨著的增大而減小,

          對任意正整數(shù)恒成立,

          且當時,,則的“緊密度”,即

          ,即,解得

          綜上所述:實數(shù)的取值范圍為

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)fx)=x22x+1的圖象與函數(shù)gx)=3cosπx的圖象所有交點的橫坐標之和等于(

          A.2B.4C.6D.8

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.

          1)求橢圓C的方程;

          2)設P的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)若函數(shù)有兩個零點,求a的取值范圍;

          (Ⅱ)恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:

          月銷售單價(元/件)

          月銷售量(萬件)

          1)若用線性回歸模型擬合之間的關系,現(xiàn)有甲、乙、丙三位實習員工求得回歸直線方程分別為:,,其中有且僅有一位實習員工的計算結(jié)果是正確的.請結(jié)合統(tǒng)計學的相關知識,判斷哪位實習員工的計算結(jié)果是正確的,并說明理由;

          2)若用模型擬合之間的關系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關指數(shù)分別為,請用說明哪個回歸模型的擬合效果更好;

          3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當月銷售單價為何值時,商品的月銷售額預報值最大?(精確到

          參考數(shù)據(jù):.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.

          1)求橢圓C的方程;

          2)設P的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】斐波拉契數(shù)列,指的是這樣一個數(shù)列:1,1,2,3,58,1321,…,在數(shù)學上,斐波拉契數(shù)列{an}定義如下:a1a21,anan1+an2n3nN),隨著n的增大,越來越逼近黃金分割0.618,故此數(shù)列也稱黃金分割數(shù)列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是(

          A.20厘米B.19厘米C.18厘米D.17厘米

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】1是由組成的一個平面圖形,其中的高,,,,將分別沿著,折起,使得重合于點BG的中點,如圖2.

          1)求證:平面平面;

          2)若,求點C到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤上標有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,棋手每擲一次硬幣,棋子向前跳動一次,若擲出正面,棋向前跳一站(從k),若擲出反面,棋向前跳兩站(從k),直到棋子跳到第99站(勝利大本營)或跳到第100站(失敗集中營)時,該游戲結(jié)束.設棋子跳到第n站概率為.

          1)求,的值;

          2)求證:,其中;

          3)求的值.

          查看答案和解析>>

          同步練習冊答案