【題目】已知點(diǎn) 及圓
.
(1)設(shè)過點(diǎn) 的直線
與圓
交于
兩點(diǎn),當(dāng)
時,求以線段
為直徑的圓
的方程;
(2)設(shè)直線 與圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
?若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
【答案】
(1)解:由于圓 的圓心
,半徑為
,
,而弦心距
,
所以 ,所以
為
的中點(diǎn),所以所求圓的圓心坐標(biāo)為
,半徑為
,
故以 為直徑的圓
的方程為:
(2)解:把直線 及
代入圓
的方程,消去
,整理得:
,由于直線
交圓
于
,
兩點(diǎn),故
,即
,解得
.則實(shí)數(shù)
的取值范圍是
.
設(shè)符合條件的實(shí)數(shù) 存在,由于
垂直平分弦
,故圓心
必在直線
上,所以
的斜率
,所以
,由于
,故不存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
.
【解析】(1)首先根據(jù)題意求出圓的半徑和圓心的坐標(biāo),再利用點(diǎn)到直線的距離公式求出弦心距由題意可知P 為 M N 的中點(diǎn),所以可求出圓的圓心坐標(biāo)和 半徑為的值,進(jìn)而得到圓的方程。(2)根據(jù)題意聯(lián)立直線和圓的方程消元整理得到關(guān)于x的方程。由題意直線和圓由兩個交點(diǎn)故該方程的Δ>0進(jìn)而求出a的取值范圍,假設(shè)a存在結(jié)合 l2 垂直平分弦 A B ,故圓心 C ( 3 , 2 ) 必在直線 l 2 上,求出l2的斜率進(jìn)而得到直線AB的斜率即a的值,該值不在a的取值范圍內(nèi)所以滿足條件的a的值是不存在的。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ (x>0)過點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N,設(shè)g(t)=|MN|,若對任意的正整數(shù)n,在區(qū)間[2,n+
]內(nèi),若存在m+1個數(shù)a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為2,若將正方形ABCD沿對角線BD折疊為三棱錐 ,則在折疊過程中,不能出現(xiàn)( )
A.
B.平面 平面CBD
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車的現(xiàn)行計(jì)價標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(fèi)(即單價為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實(shí)中要計(jì)等待時間且最終付費(fèi)取整數(shù),本題在計(jì)算時都不予考慮)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,當(dāng)x∈(0,+∞)時,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若f(x)的圖象與直線y=kx有兩個不同的交點(diǎn),則實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是定義在
上的奇函數(shù),且
偶函數(shù)
的定義域?yàn)?
,且當(dāng)
時,
.若存在實(shí)數(shù)
,使得
成立,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是
直徑,
所在的平面,
是圓周上不同于
的動點(diǎn).
(1)證明:平面 平面
;
(2)若 ,且當(dāng)二面角
的正切值為
時,求直線
與平面
所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com