日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列的前項和為,滿足,.?dāng)?shù)列滿足,,且

          (1)求數(shù)列的通項公式;

          (2)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍;

          (3)是否存在正整數(shù),,使,,)成等差數(shù)列,若存在,求出所有滿足條件的,若不存在,請說明理由.

          【答案】(1)(2)(3)不存在

          【解析】試題分析:(1)根據(jù)和項與通項關(guān)系得遞推關(guān)系,結(jié)合等比數(shù)列定義可得通項公式,先對條件變形得新數(shù)列為一個等差數(shù)列,根據(jù)等差數(shù)列通項公式得的通項公式;(2)先根據(jù)錯位相減法求出,化簡可得恒成立,再根據(jù)數(shù)列單調(diào)性可得最小值為零,即得實數(shù)的取值范圍;(3)先根據(jù)條件化簡得,再利用奇偶分析法研究方程解的情況.

          試題解析:(1)當(dāng)時,,所以

          當(dāng)時,,

          兩式相減得,

          從而數(shù)列為首項,公比的等比數(shù)列,

          從而數(shù)列的通項公式為

          兩邊同除以

          從而數(shù)列為首項,公差的等差數(shù)列,所以,

          從而數(shù)列的通項公式為

          (2)由(1)得,

          于是

          所以

          兩式相減得,

          所以

          由(1)得,

          因為對 ,都有

          恒成立,

          所以恒成立,

          ,

          所以,

          因為 ,

          從而數(shù)列為遞增數(shù)列,所以當(dāng)取最小值

          于是

          (3)假設(shè)存在正整數(shù)),使成等差數(shù)列,則,

          為偶數(shù),則為奇數(shù),而為偶數(shù),上式不成立.

          為奇數(shù),設(shè),則,

          于是,即,

          當(dāng)時,,此時矛盾;

          當(dāng)時,上式左邊為奇數(shù),右邊為偶數(shù),顯然不成立.

          綜上所述,滿足條件的實數(shù)對不存在.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù) .

          (1)求的單調(diào)區(qū)間;

          (2)設(shè),且有兩個極值點,其中,求的最小值;

          (3)證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3﹣1的等差中項.
          (1)求數(shù)列{an}的通項公式;
          (2)若數(shù)列{bn}滿足bn=2n﹣1+an(n∈N*),求{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù),在區(qū)間(﹣∞,0)單調(diào)遞增且f(﹣1)=0.若實數(shù)a滿足 ,則實數(shù)a的取值范圍是(
          A.[1,2]
          B.
          C.(0,2]
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在上學(xué)路上要經(jīng)過、、三個帶有紅綠燈的路口.已知他在、三個路口遇到紅燈的概率依次是、,遇到紅燈時停留的時間依次是秒、秒、秒,且在各路口是否遇到紅燈是相互獨立的.

          (1)求這名同學(xué)在上學(xué)路上在第三個路口首次遇到紅燈的概率;,

          (2)求這名同學(xué)在上學(xué)路上因遇到紅燈停留的總時間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

          (1)求△ACD的面積;
          (2)若BC=2 ,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

          (1)求證:PA∥平面QBC;
          (2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

          日期

          11月1日

          11月2日

          11月3日

          11月4日

          11月5日

          溫差x(℃)

          8

          11

          12

          13

          10

          發(fā)芽數(shù)y(顆)

          16

          25

          26

          30

          23

          設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
          (注: ,
          (1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
          (2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;
          (3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求曲線y=x2﹣2x+3與直線y=x+3圍成的圖形的面積.

          查看答案和解析>>

          同步練習(xí)冊答案