【題目】已知橢圓:
(
)的左焦點(diǎn)為
,左準(zhǔn)線方程為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓
于
,
兩點(diǎn).
①若直線經(jīng)過橢圓
的左焦點(diǎn)
,交
軸于點(diǎn)
,且滿足
,
.求證:
為定值;
②若(
為原點(diǎn)),求
面積的取值范圍.
【答案】(1)(2)①
②
【解析】試題分析:(1)根據(jù)左焦點(diǎn)坐標(biāo)得,根據(jù)左準(zhǔn)線方程得
,解方程組得
,(2)①以算代證:即利用
,
坐標(biāo)表示
,根據(jù)直線
的方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理化簡
得定值,②
的面積
,因此根據(jù)直線
的方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理及弦長公式求
(用
斜率表示),同理可得
,代入面積公式化簡可得
.最后利用二次函數(shù)方法求值域,注意討論斜率不存在的情形.
試題解析:解:(1)由題設(shè)知,
,
,
,
,
:
.
(2)①由題設(shè)知直線的斜率存在,設(shè)直線
的方程為
,則
.
設(shè),
,直線
代入橢圓得
,整理得,
,
,
.
由,
知
,
,
(定值).
②當(dāng)直線,
分別與坐標(biāo)軸重合時(shí),易知
的面積
,
當(dāng)直線,
的斜率均存在且不為零時(shí),設(shè)
:
,
:
,
設(shè),
,將
代入橢圓
得到
,
,
,同理
,
,
的面積
.
令
,
,
令,則
.
綜上所述, .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請你設(shè)計(jì)一個(gè)包裝盒.如圖所示,ABCD是邊長為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒.E、F在AB上,是被切去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn).設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具廠有方木料,五合板
,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料
,五合板
,生產(chǎn)每個(gè)書櫥需要方木料
,五合板
,出售一張書桌可獲利潤
元,出售一個(gè)書櫥可獲利潤
元.
(1)如果只安排生產(chǎn)書桌,可獲利潤多少?
(2)如果只安排生產(chǎn)書櫥,可獲利潤多少?
(3)怎樣安排生產(chǎn)可使所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí), 求函數(shù)
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= sin
,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋中裝有大小相同的2個(gè)白球、2個(gè)紅球和1個(gè)黃球.一項(xiàng)游戲規(guī)定:每個(gè)白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個(gè)球,將3個(gè)球?qū)?yīng)的分值相加后稱為該局的得分,計(jì)算完得分后將球放回袋中.當(dāng)出現(xiàn)第局得
分(
)的情況就算游戲過關(guān),同時(shí)游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時(shí)局?jǐn)?shù)的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(Ⅰ)試判斷函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若函數(shù)在
上為增函數(shù),求整數(shù)
的最大值.
(可能要用的數(shù)據(jù): ,
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求 的最小值;
(2)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:丨OR丨丨OS丨為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點(diǎn)A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com