日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=lnx+ax2+x+1.

          (I)a=﹣2時,求函數(shù)f(x)的極值點;

          (Ⅱ)當(dāng)a=0時,證明xex≥f(x)在(0,+∞)上恒成立.

          【答案】(1) x=1是f(x)的極大值點,無極小值點(2)詳見解析

          【解析】試題分析:(1)求導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,通過單調(diào)性求極值點;(2)當(dāng)a=0時構(gòu)造函數(shù)F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),只要證明F(x)≥=0即可。

          試題解析:

          (Ⅰ)由題意得函數(shù)的定義域為(0,+∞),

          ∵ f(x)=lnx+ax2+x+1,

          ∴f′(x)=﹣2x+1=,

          令f′(x)>0,解得0<x<1;令f′(x)<0,解得x>1,

          ∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,

          ∴x=1是函數(shù)f(x)的極大值點,無極小值點;

          (Ⅱ)證明:當(dāng)a=0時,f(x)=lnx+x+1

          令F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),

          則F′(x)= (xex﹣1),

          令G(x)=xex﹣1,

          則G′(x)=(x+1)ex>0,(x>0),

          ∴函數(shù)G(x)在(0,+∞)遞增,

          又G(0)=﹣1<0,G(1)=e﹣1>0,

          ∴存在唯一c∈(0,1)使得G(c)=0,

          且F(x)在(0,c)上單調(diào)遞減,在(c,+∞)上單調(diào)遞增,

          故F(x)≥F(c)=cec﹣lnc﹣c﹣1,

          由G(c)=0,得cec﹣1=0,得lnc+c=0,

          ∴F(c)=0,

          ∴F(x)≥F(c)=0,

          從而證得xex≥f(x).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給定橢圓C: =1(a>b>0).設(shè)t>0,過點T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點,O為坐標(biāo)原點.
          (Ⅰ)用a,b,k,t表示△OMN的面積S,并說明k,t應(yīng)滿足的條件;
          (Ⅱ)當(dāng)k變化時,求S的最大值g(t).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達的時刻是等可能的,約好當(dāng)其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.

          (1)求角B的大;

          (2)若△ABC的面積為,求sinA+sinC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          如圖,已知四棱錐,底面為菱形,,

          , 平面, 分別是的中點。

          1證明: ;

          2上的動點,與平面所成最大角

          的正切值為,求二面角的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】用紅、黃、藍三種不同顏色給圖中3個矩形隨機涂色,每個矩形只涂一種顏色,求:
          (1)3個矩形顏色都相同的概率;
          (2)3個矩形顏色都不同的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
          (1)列出所有可能結(jié)果.
          (2)求事件A=“取出球的號碼之和小于4”的概率.
          (3)求事件B=“編號X<Y”的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖像與直線相切.

          Ⅰ)求的值,并求的單調(diào)區(qū)間;

          Ⅱ)若,設(shè),討論函數(shù)的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1= ,2Sn﹣SnSn1=1(n≥2).
          (1)猜想Sn的表達式,并用數(shù)學(xué)歸納法證明;
          (2)設(shè)bn= ,n∈N* , 求bn的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案