日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)求函數(shù)上的最小值的表達(dá)式;

          2)若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍.

          【答案】1;(2.

          【解析】

          1)求出函數(shù)的對(duì)稱軸方程,對(duì)實(shí)數(shù)、三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出函數(shù)在區(qū)間上的最小值的表達(dá)式;

          2)對(duì)函數(shù)分情況討論:(i)方程在區(qū)間上有兩個(gè)相等的實(shí)根;(ii)①方程在區(qū)間只有一根;(②;③.可得出關(guān)于實(shí)數(shù)的等式或不等式,即可解得實(shí)數(shù)的取值范圍.

          1,其對(duì)稱軸為,

          當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,

          當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,.

          綜上所述:;

          2)(i)若方程上有兩個(gè)相等的實(shí)數(shù)根,

          ,此時(shí)無(wú)解;

          ii)若方程有兩個(gè)不相等的實(shí)數(shù)根.

          ①當(dāng)只有一根在內(nèi)時(shí),,即,得;

          ②當(dāng)時(shí),,方程化為,其根為,,滿足題意;

          ③當(dāng)時(shí),,方程化為,其根為,,滿足題意.

          綜上所述,的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某種產(chǎn)品的質(zhì)量以其“無(wú)故障使用時(shí)間 (單位:小時(shí))”衡量,無(wú)故障使用時(shí)間越大表明產(chǎn)品質(zhì)量越好,且無(wú)故障使用時(shí)間大于3小時(shí)的產(chǎn)品為優(yōu)質(zhì)品,從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取100件,并記錄了每件產(chǎn)品的無(wú)故障使用時(shí)間,得到下面試驗(yàn)結(jié)果:

          無(wú)故障使用時(shí)間 (小時(shí))

          頻數(shù)

          20

          40

          40

          以試驗(yàn)結(jié)果中無(wú)故障使用時(shí)間落入各組的頻率作為一件產(chǎn)品的無(wú)故障使用時(shí)間落入相應(yīng)組的概率.

          (1)從該企業(yè)任取兩件這種產(chǎn)品,求至少有一件是優(yōu)質(zhì)品的概率;

          (2)若該企業(yè)生產(chǎn)的這種產(chǎn)品每件銷售利潤(rùn) (單位:元)與其無(wú)故障使用時(shí)間的關(guān)系式為

          從該企業(yè)任取兩件這種產(chǎn)品,其利潤(rùn)記為 (單位:元),求的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中國(guó)第一高摩天輪南昌之星摩天輪高度為,其中心距地面,半徑為,若某人從最低點(diǎn)處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時(shí)間變化,后達(dá)到最高點(diǎn),從登上摩天輪時(shí)開始計(jì)時(shí).

          1)求出人與地面距離與時(shí)間的函數(shù)解析式;

          2)從登上摩天輪到旋轉(zhuǎn)一周過(guò)程中,有多長(zhǎng)時(shí)間人與地面距離大于.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:

          溫度x/C

          21

          23

          24

          27

          29

          32

          產(chǎn)卵數(shù)y/個(gè)

          6

          11

          20

          27

          57

          77

          經(jīng)計(jì)算得: , ,

          ,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

          ()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

          ()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

          ( i )試與()中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.

          ( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

          附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

          =;相關(guān)指數(shù)R2=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.

          )求橢圓的方程;

          )若是橢圓的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)的直線與橢圓交于, 兩點(diǎn),求的面積之差的絕對(duì)值的最大值.為坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法中錯(cuò)誤的個(gè)數(shù)是(

          ①?gòu)哪成鐓^(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣

          ②線性回歸直線一定過(guò)樣本中心點(diǎn)

          ③對(duì)于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化

          ④若一組數(shù)據(jù)1、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2

          ⑤用系統(tǒng)抽樣方法從編號(hào)為1,23,…,700的學(xué)生中抽樣50人,若第2段中編號(hào)為20的學(xué)生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學(xué)生編號(hào)為76

          A.0B.1C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】平行六面體中,以頂點(diǎn)為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為.

          (1)求的長(zhǎng);

          (2)求異面直線夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).

          (1)證明:EF平面PAB;

          (2)若二面角P-AD-B為60°

          證明:平面PBC平面ABCD;

          求直線EF與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知.

          (1)討論的單調(diào)性;

          (2)若恒成立,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案