【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題
隨機變量
服從正態(tài)分布
,且
,則
.現(xiàn)給出四個命題:①
,②
,③
,④
,其中真命題的是( )
A.①③B.①④C.②③D.②④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線
在點
,
(1)
處的切線方程為
.
(1)求函數(shù)的解析式,并證明:
.
(2)已知,且函數(shù)
與函數(shù)
的圖象交于
,
,
,
兩點,且線段
的中點為
,
,證明:
(1)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,以
軸的正半軸為極軸,建立極坐標(biāo)系,點
的極坐標(biāo)
,直線
經(jīng)過點
,且傾斜角為
.
(1)寫出曲線的直角坐標(biāo)方程和直線
的標(biāo)準(zhǔn)參數(shù)方程;
(2)直線與曲線
交于
兩點,直線
的參數(shù)方程為
(t為參數(shù)),直線
與曲線
交于
兩點,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a為正實數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的一個頂點坐標(biāo)為A(0,﹣1),離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x﹣1)(k0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B的坐標(biāo)分別是(,0),(
,0),動點M(x,y)滿足直線AM和BM的斜率之積為﹣3,記M的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+m與曲線E相交于P,Q兩點,若曲線E上存在點R,使得四邊形OPRQ為平行四邊形(其中O為坐標(biāo)原點),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
、
、
分別為棱
、
、
的中點,
平面
,
,
,
,則( )
A.三棱錐的體積為
B.直線與直線
垂直
C.平面截三棱錐
所得的截面面積為
D.點與點
到平面
的距離相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以
為極點,
軸正半軸為極軸建立極坐標(biāo)系.已知曲線
的參數(shù)方程為
(
為參數(shù),
),曲線
的極坐標(biāo)方程為
,點
是
與
的一個交點,其極坐標(biāo)為
.設(shè)射線
與曲線
相交于
,
兩點,與曲線
相交于
,
兩點.
(1)求,
的值;
(2)求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com