日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正四棱錐SABCD中,SAAB=2,E,F,G分別為BC,SC,CD的中點(diǎn).設(shè)P為線段FG上任意一點(diǎn).

          (1)求證:EPAC;

          (2)當(dāng)P為線段FG的中點(diǎn)時(shí),求直線BP與平面EFG所成角的余弦值.

          【答案】(1)見解析;(2)

          【解析】試題分析:(1)先證AC⊥平面SBD,再證平面EFG∥平面BSD,即得AC⊥平面GEF,因此可得EPAC;(2)過BBHGEH,根據(jù)三垂線定理可得∠BPH就是直線BP與平面EFG所成的角.再解三角形可得直線BP與平面EFG所成角的余弦值.

          試題解析:(1)證明 設(shè)ACBDO點(diǎn),

          SABCD為正四棱錐,

          SO⊥底面ABCD,BDAC,

          AC平面ABCD,

          SOAC,∵BDSOO,

          BD平面SBD,SO平面SBD,

          AC⊥平面SBD

          E,FG分別為BC,SC,CD的中點(diǎn),

          FGSDBDEG.

          FGEGG,SDBDD,

          FG平面EFG,EG平面EFG,

          SDBSD,BD平面BSD,

          ∴平面EFG∥平面BSD,

          AC⊥平面GEF.

          又∵PE平面GEF,∴PEAC.

          (2)解 過BBHGEH,連接PH,

          BDACBDGH,

          BHAC,

          由(1)知AC⊥平面GEF

          BH⊥平面GEF.

          ∴∠BPH就是直線BP與平面EFG所成的角.

          在Rt△BHP中,BH,PH,PB,

          故cos∠BPH.

          點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

          (1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

          (2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

          (3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的左,右焦點(diǎn)分別為,且與短軸的一個(gè)端點(diǎn)Q構(gòu)成一個(gè)等腰直角三角形,點(diǎn)P)在橢圓上,過點(diǎn)作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓A,B,C,DM,N分別是弦AB,CD的中點(diǎn)

          (1)求橢圓的方程

          (2)求證:直線MN過定點(diǎn)R

          (3)面積的最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是正三棱柱,DAC中點(diǎn).

          (1)證明: 平面;

          (2)若,求二面角的度數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)在點(diǎn)(1,1)處的切線方程為xy2.

          (1)a,b的值;

          (2)對函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,不等式f(x)0恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中a∈R.

          Ⅰ)當(dāng)a1時(shí),判斷fx)的單調(diào)性;

          Ⅱ)gx)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )

          A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐PABCD,E,F分別為PC,ACAB的中點(diǎn)已知PAAC,PA6,BC8,DF5.

          求證(1)直線PA∥平面DEF;

          (2)平面BDE⊥平面ABC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

          (1)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);

          (2)估計(jì)該天食堂利潤不少于760元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四邊形 的四個(gè)頂點(diǎn)在橢圓 上,對角線所在直線的斜率為,且, .

          (1)當(dāng)點(diǎn)為橢圓的上頂點(diǎn)時(shí),求所在直線方程;

          (2)求四邊形面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案