【題目】已知平面內(nèi)動點到兩定點
和
的距離之和為4.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)已知直線和
的傾斜角均為
,直線
過坐標原點
且與曲線
相交于
,
兩點,直線
過點
且與曲線
是交于
,
兩點,求證:對任意
,
.
【答案】(Ⅰ) (Ⅱ)見解析
【解析】試題分析:(Ⅰ)由橢圓定義可得動點的軌跡E是以定點
和
為焦點的橢圓,且
,從而得方程;
(Ⅱ)由題設可設直線的參數(shù)方程分別為
;
,將直線
的參數(shù)方程分別和橢圓
聯(lián)立后整理得:
;
,由
和
,從而由韋達定理求解即可.
試題解析:
(Ⅰ)解: 則根據(jù)橢圓的定義得:動點
的軌跡E是以定點
和
為焦點的橢圓,且
,
,
可得動點M的軌跡的方程為
.
(Ⅱ)證明:由題設可設直線的參數(shù)方程分別為
;
.
將直線的參數(shù)方程分別和橢圓
聯(lián)立后整理得:
;
.
則由參數(shù)t的幾何意義、根與系數(shù)的關系及橢圓的對稱性有:
;
,
故.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是雙曲線
的左、右焦點,過點
作垂直與
軸的直線交雙曲線于
,
兩點,若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線的通徑求得點的坐標,將三角形
為銳角三角形,轉(zhuǎn)化為
,即
,將表達式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知,由于三角形
為銳角三角形,結合雙曲線的對稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為
,利用
列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結束】
17
【題目】已知命題:方程
有兩個不相等的實數(shù)根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正四棱錐中,
為底面正方形的中心,側棱
與底面
所成的角的正切值為
.
(1)求側面與底面
所成的二面角的大;
(2)若是
的中點,求異面直線
與
所成角的正切值;
(3)問在棱上是否存在一點
,使
⊥側面
,若存在,試確定點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線
的參數(shù)方程為
(
為參數(shù)),在以直角坐標系的原點
為極點,
軸的正半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
(Ⅰ)求曲線的直角坐標方程和直線
的普通方程;
(Ⅱ)若直線與曲線
相交于
,
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):為什么二次函數(shù)的圖象是拋物線?我們知道,平面內(nèi)與一個定點F和一條定直線l距離相等的點的軌跡是拋物線,這是拋物線的定義,也是其本質(zhì)特征
因此,只要說明二次函數(shù)的圖象符合拋物線的本質(zhì)特征,就解決了為什么二次函數(shù)
的圖象是拋物線的問題
進一步講,由拋物線與其方程之間的關系可知,如果能用適當?shù)姆绞綄?/span>
轉(zhuǎn)化為拋物線標準方程的形式,那么就可以判定二次函數(shù)
的圖象是拋物線了.下面我們就按照這個思路來展開.對二次函數(shù)式
的右邊配方,得
.由函數(shù)圖象平移
一般地,設
是坐標平面內(nèi)的一個圖形,將
上所有點按照同一方向,移動同樣的長度,得到圖形
,這一過程叫作圖形的平移
的知識可以知道,沿向量
平移函數(shù)
的圖象
如圖,函數(shù)圖象的形狀、大小不發(fā)生任何變化,平移后圖象對應的函數(shù)解析式為
,我們把它改寫為
的形式
方程
,這是頂點為坐標原點,焦點為
的拋物線.這樣就說明了二次函數(shù)
的圖象是一條拋物線.
請根據(jù)以上閱讀材料,回答下列問題:
由函數(shù)
的圖象沿向量
平移,得到的圖象對應的函數(shù)解析式為
,求
的坐標;
過拋物線
的焦點F的一條直線交拋物線于P、Q兩點若線段PF與QF的長分別是p、q,試探究
是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某市主辦的科技知識競賽的學生成績中隨機選取了40名學生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組
;
;第六組
,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間
內(nèi)的學生人數(shù);
估計這40名學生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{}是等差數(shù)列,數(shù)列{
}的前
項和
滿足
,
,且
(1)求數(shù)列{}和{
}的通項公式:
(2)設為數(shù)列{
.
}的前
項和,求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com