日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c,若b2+c2-
          3
          bc=a2
          ,且
          b
          a
          =
          2
          ,則∠C=
           
          分析:根據(jù)余弦定理表示出cosA,把已知的等式代入化簡后得到cosA的值,由A的范圍,利用特殊角的三角函數(shù)值求出∠A的度數(shù),進(jìn)而求出sinA的值,又b比a的值,利用正弦定理得到sinB與sinA的比值,進(jìn)而求出sinB的值,由B的范圍,利用特殊角的三角函數(shù)值求出∠B的度數(shù),再根據(jù)三角形的內(nèi)角和定理求出∠C的度數(shù).
          解答:解:因為b2+c2-
          3
          bc=a2
          ,
          所以根據(jù)余弦定理得:cosA=
          b2+c2-a2
          2bc
          =
          3
          2

          由∠A∈(0,180°),得到∠A=30°,則sinA=
          1
          2
          ,
          b
          a
          =
          2
          ,根據(jù)正弦定理得:
          b
          a
          =
          sinB
          sinA
          =
          2
          ,即sinB=
          2
          sinA=
          2
          2
          ,
          由∠B∈(0,180°),得到∠B=45°或135°,
          則∠C=15°或105°.
          故答案為:15°或105°
          點評:此題的突破點是利用余弦定理表示出cosA,把已知的等式代入求出cosA的值.本題的答案有兩解,產(chǎn)生兩解的原因是在(0,180°)范圍內(nèi)正弦值對應(yīng)兩個角,學(xué)生做題時容易遺漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•臨沂一模)已知函數(shù)f(x)=cos
          x
          2
          -
          3
          sin
          x
          2

          (I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
          (Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
          2
          3
          π)=
          4
          3
          ,sinB=
          5
          cosC,a=
          2
          ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
          (1)求角A的值;
          (2)若a=
          3
          ,設(shè)內(nèi)角B為x,周長為y,求y=f(x)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=
          π
          4
          ,則(cosA一cosC)2的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中角A、B、C的對邊分別為a、b、c設(shè)向量
          m
          =(a,cosB),
          n
          =(b,cosA)且
          m
          n
          m
          n

          (Ⅰ)若sinA+sinB=
          6
          2
          ,求A;
          (Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
          7
          ,∠B=
          π
          3
          ,則△ABC的面積為(  )

          查看答案和解析>>

          同步練習(xí)冊答案