日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,已知a=2,b=
          7
          ,∠B=
          π
          3
          ,則△ABC的面積為( 。
          分析:由a,b及cosB的值,利用余弦定理求出c的值,再由a,c及sinB的值,利用三角形的面積公式即可求出三角形ABC的面積.
          解答:解:由余弦定理b2=a2+c2-2accosB得:7=4+c2-2c,即(c-3)(c+1)=0,
          解得:c=3或c=-1(舍去),
          則S△ABC=
          1
          2
          acsinB=
          1
          2
          ×2×3×
          3
          2
          =
          3
          3
          2

          故選B
          點(diǎn)評(píng):此題考查了余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•臨沂一模)已知函數(shù)f(x)=cos
          x
          2
          -
          3
          sin
          x
          2

          (I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
          (Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若f(2A-
          2
          3
          π)=
          4
          3
          ,sinB=
          5
          cosC,a=
          2
          ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•煙臺(tái)二模)在△ABC中,a、b、c為角A、B、C所對(duì)的三邊.已知b2+c2-a2=bc
          (1)求角A的值;
          (2)若a=
          3
          ,設(shè)內(nèi)角B為x,周長(zhǎng)為y,求y=f(x)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
          π
          4
          ,則(cosA一cosC)2的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中角A、B、C的對(duì)邊分別為a、b、c設(shè)向量
          m
          =(a,cosB),
          n
          =(b,cosA)且
          m
          n
          ,
          m
          n

          (Ⅰ)若sinA+sinB=
          6
          2
          ,求A;
          (Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案