日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 斜率為2的直線l與雙曲線
          x2
          3
          -
          y2
          2
          =1
          交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.
          由題意,設(shè)直線l的方程為y=2x+b.
          代入雙曲線
          x2
          3
          -
          y2
          2
          =1
          ,可得10x2+12bx+3b2+6=0,
          設(shè)A(x1,y1),B(x2,y2),則x1+x2=-
          6b
          5
          ,x1•x2=
          3b2+6
          10

          ∴|AB|=
          1+22
          •|x1-x2|=
          5
          36b2
          25
          -4•
          3b2+6
          10
          =4,
          ∴b=
          210
          3
          ,
          ∴直線l的方程為y=2x±
          210
          3
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸,它的短軸長為2,過焦點(diǎn)與x軸垂直的直線與橢圓C相交于A,B兩點(diǎn)且|AB|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過定點(diǎn)N(1,0)的直線l交橢圓C于C、D兩點(diǎn),交y軸于點(diǎn)P,若
          PC
          1
          CN
          ,
          PD
          =λ2
          DN
          ,求證:λ12為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為2,其一個(gè)頂點(diǎn)的坐標(biāo)是(
          1
          3
          ,0)
          ;又直線l:y=kx+1與雙曲線C相交于不同的A、B兩點(diǎn).
          (Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
          (Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓過坐標(biāo)的原點(diǎn)?若存在,求出k的值;若不存在,寫出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如果橢圓
          x2
          36
          +
          y2
          9
          =1
          的弦AB被點(diǎn)M(x0,y0)平分,設(shè)直線AB的斜率為k1,直線OM(O為坐標(biāo)原點(diǎn))的斜率為k2,則k1•k2=( 。
          A.4B.
          1
          4
          C.-1D.-
          1
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)(1,0)的距離與到定直線L:x=-1的距離相等,
          (1)求曲線C的方程;
          (2)直線m過(-2,1),斜率為k,k為何值時(shí),直線m與曲線C只有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn);沒有公共點(diǎn)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點(diǎn)P(x0,y0)是橢圓C:
          x2
          5
          +y2=1
          上的一點(diǎn).F1、F2是橢圓C的左右焦點(diǎn).
          (1)若∠F1PF2是鈍角,求點(diǎn)P橫坐標(biāo)x0的取值范圍;
          (2)求代數(shù)式
          y20
          +2x0
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (文)已知橢圓
          x2
          36
          +
          y2
          9
          =1
          的一條弦的中點(diǎn)為P(4,2),求此弦所在直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)F1、F2為橢圓
          x2
          9
          +
          y2
          4
          =1
          的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
          |PF1|
          |PF2|
          的值為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),點(diǎn)M是AB的中點(diǎn).
          (1)若點(diǎn)M的軌跡為曲線C,求此曲線的方程;
          (2)設(shè)直線l:x+y+3=0,求曲線C上的點(diǎn)到直線l距離的最大值和最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案