日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知?jiǎng)狱c(diǎn)到點(diǎn)的距離等于它到直線的距離,則點(diǎn)的軌跡方程是      .

          試題分析:設(shè),因?yàn)閯?dòng)點(diǎn)到點(diǎn)的距離等于它到直線的距離,所以根據(jù)兩點(diǎn)間的距離公式和點(diǎn)到直線的距離公式可得,,化簡(jiǎn)可得拋物線的軌跡方程為
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,且點(diǎn)在橢圓上.
          (1)求橢圓的方程;
          (2)設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過作方向向量的直線交橢圓兩點(diǎn),求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
          (1) 求橢圓的離心率的取值范圍。
          (2)當(dāng)離心率最小且時(shí),求橢圓的方程。
          (3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于兩點(diǎn)。求四邊形ABCD面積的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知雙曲線、是雙曲線的左右頂點(diǎn),是雙曲線上除兩頂點(diǎn)外的一點(diǎn),直線與直線的斜率之積是
          求雙曲線的離心率;
          若該雙曲線的焦點(diǎn)到漸近線的距離是,求雙曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線被直線截得的弦長(zhǎng)為,求拋物線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)橢圓C:過點(diǎn)(0,4),離心率為
          (Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線,為坐標(biāo)原點(diǎn),動(dòng)直線
          拋物線交于不同兩點(diǎn)
          (1)求證:·為常數(shù);
          (2)求滿足的點(diǎn)的軌跡方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知?jiǎng)訄A經(jīng)過點(diǎn),且和直線相切,
          (1)求動(dòng)圓圓心的軌跡C的方程;
          (2)已知曲線C上一點(diǎn)M,且5,求M點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
          (Ⅰ)求雙曲線的方程;
          (Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問:是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案