日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)
          (1)求函數(shù)f(x)的單調(diào)增區(qū)間;
          (2)若 ,求cos2α的值.

          【答案】
          (1)解:函數(shù)

          = sin2x+2

          = sin2x+ cos2x+

          = sin(2x+ )+ ,

          令﹣ +2kπ≤2x+ +2kπ,k∈Z,

          解得﹣ +kπ≤x≤ +kπ,k∈Z,

          ∴函數(shù)f(x)的單調(diào)增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z;


          (2)解:∵f(α)= sin(2α+ )+ =2,

          ∴sin(2α+ )=

          又α∈[ , ],

          ≤2α+ ,

          ∴2α+ = ,

          ∴2α=

          ∴cos2α=


          【解析】(1)化簡(jiǎn)函數(shù)f(x)為正弦型函數(shù),根據(jù)正弦函數(shù)的單調(diào)性寫出它的單調(diào)增區(qū)間;(2)根據(jù)f(x)的解析式,結(jié)合α的取值范圍,利用三角函數(shù)關(guān)系即可求出cos2α的值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的周長為l,面積為S,則△ABC的內(nèi)切圓半徑為r= .將此結(jié)論類比到空間,已知四面體ABCD的表面積為S,體積為V,則四面體ABCD的內(nèi)切球的半徑R=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】歐陽修《賣油翁)中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌漓瀝之,自錢孔入,而錢不濕,可見行行出狀元,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為4 cm的圓,中間有邊長為l cm的正方形孔.若隨機(jī)向銅錢上滴一滴油(設(shè)油滴整體落在銅錢上).則油滴(設(shè)油滴是直徑為0.2 cm的球)正好落入孔中(油滴整體落入孔中)的概率是_________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】先后擲子(子的六個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn))兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)y=sinx的圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼? 倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個(gè)單位長度,所得圖象的函數(shù)解析式為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中, 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線.

          (1)求的普通方程及的直角坐標(biāo)方程,并說明它們分別表示什么曲線;

          2)若分別為, 上的動(dòng)點(diǎn),且的最小值為2,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將直角△ABC沿著平行BC邊的直線DE折起,使得平面A′DE⊥平面BCDE,其中D、E分別在AC、AB邊上,且AC⊥BC,BC=3,AB=5,點(diǎn)A′為點(diǎn)A折后對(duì)應(yīng)的點(diǎn),當(dāng)四棱錐A′-BCDE的體積取得最大值時(shí),求AD的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

          (Ⅱ)令bn=log2an,Tn{bn}的前n項(xiàng)和,求證 <2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD中,ABADADBC,AD=6,BC=2AB=4,E,F分別在BC,AD上,EFAB.現(xiàn)將四邊形ABCD沿EF折起,使平面ABEF⊥平面EFDC.

          (Ⅰ)若BE=1,是否在折疊后的線段AD上存在一點(diǎn)P,且,使CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;

          求三棱錐ACDF的體積的最大值,并求出此時(shí)二面角EACF的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案