日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知約束條件
          y≥x-1
          0≤x≤2
          y≤2    
          ,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
          A、2B、3C、5D、6
          分析:先畫出約束條件
          y≥x-1
          0≤x≤2
          y≤2    
          的可行域,再求出可行域中各角點(diǎn)的坐標(biāo),將各點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)z=2x+y的最大值.
          解答:解:約束條件
          y≥x-1
          0≤x≤2
          y≤2    
          的可行域如下圖示:
          精英家教網(wǎng)
          點(diǎn)A(2,2)B(2,1)C(-1,0)D(0,2)
          由圖易得目標(biāo)函數(shù)z=2x+y在點(diǎn)A(2,2)處取得最大值6
          故選D.
          點(diǎn)評:在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知約束條件
          x+2y≤8
          2x+y≤8
          x∈N+,y∈N+
          ,目標(biāo)函數(shù)z=3x+y,某學(xué)生求得x=
          8
          3
          ,y=
          8
          3
          時(shí),zmax=
          32
          3
          ,這顯然不合要求,正確答案應(yīng)為x=
          3
          3
          ; y=
          2
          2
          ; zmax=
          11
          11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知變量x,y滿足約束條件
          y+x-1≤0
          y-3x-1≤0
          y-x+1≥0
          則z=2x+y的最大值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知約束條件:
          x+2y≤6
          2x+y≤6
          x≥0,y≥0
          ,則目標(biāo)函數(shù)z=|2x-y+1|的最小值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知約束條件
          x+2y≤8
          2x+y≤8
          x∈N+,y∈N+
          ,目標(biāo)函數(shù)z=3x+y,某學(xué)生求得x=
          8
          3
          ,y=
          8
          3
          時(shí),zmax=
          32
          3
          ,這顯然不合要求,正確答案應(yīng)為(  )

          查看答案和解析>>

          同步練習(xí)冊答案