日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=ax+
          bx
          +2-2a(a>0)在圖象在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行.
          (1)求a,b滿足的關(guān)系式;
          (2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
          (3)若a=1,數(shù)列{an}滿足a1=2,an+1=f(an)+2-an(n∈N*),求證:a1•a2•a3…an=n+1.
          分析:(1)求導(dǎo)函數(shù),利用圖象在點(diǎn)(1,f(1))處的切線與直線y=2x+1平行,可求a,b滿足的關(guān)系式;
          (2)構(gòu)造g(x)=f(x)-2lnx,求導(dǎo)函數(shù),分類(lèi)討論,確定函數(shù)的單調(diào)性,即可求得結(jié)論;
          (3)取a=1得f(x)=x-
          1
          x
          ,利用an+1=f(an)+2-an=2-
          1
          an
          ,可得{
          1
          an-1
          }是等差數(shù)列,首項(xiàng)為
          1
          a1-1
          =1
          ,公差為1,從而可得數(shù)列通項(xiàng),即可證得結(jié)論.
          解答:(1)解:求導(dǎo)函數(shù)可得f′(x)=a-
          b
          x2
          ,根據(jù)題意f′(1)=a-b=2,即b=a-2;
          (2)解:由(1)知,f(x)=ax+
          a-2
          x
          +2-2a,
          令g(x)=f(x)-2lnx=ax+
          a-2
          x
          +2-2a-2lnx,x∈[1,+∞)
          則g(1)=0,g′(x)=
          a(x-1)(x-
          2-a
          a
          )
          x2

          ①當(dāng)0<a<1時(shí),
          2-a
          a
          >1
          ,若1<x<
          2-a
          a
          ,則g′(x)<0,g(x)在[1,+∞)減函數(shù),所以g(x)<g(1)=0,即f(x)<2lnx在[1,+∞)上恒成立;
          ②a≥1時(shí),
          2-a
          a
          ≤1
          ,當(dāng)x>1時(shí),g′(x)>0,g(x)在[1,+∞)增函數(shù),又g(1)=0,所以f(x)≥2lnx.
          綜上所述,所求的取值范圍是[1,+∞);
          (3)證明:取a=1得f(x)=x-
          1
          x
          ,所以an+1=f(an)+2-an=2-
          1
          an

          ∴an+1-1=
          an-1
          an
          ,∴
          1
          an+1-1
          =
          1
          an-1
          +1
          ∴{
          1
          an-1
          }是等差數(shù)列,首項(xiàng)為
          1
          a1-1
          =1
          ,公差為1,
          1
          an-1
          =n,∴an=
          n+1
          n

          ∴a1•a2•…an=
          2
          1
          3
          2
          •…•
          n+1
          n
          =n+1.
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查分類(lèi)討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax+a-x(a>0且a≠1),
          (1)證明函數(shù)f ( x )的圖象關(guān)于y軸對(duì)稱(chēng);
          (2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
          (3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為
          103
          ,求此時(shí)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax+b(a>0且a≠1,b為常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,1)且0<f(0)<1,記m=
          1
          2
          [f-1(x1)+f-1(x2)]
          ,n=f-1(
          x1+x2
          2
          )
          (x1、x2是兩個(gè)不相等的正實(shí)數(shù)),試比較m、n的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
          (2)設(shè)函數(shù)f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax(a>1),g(x)=bx(b>1),當(dāng)f(x1)=g(x2)=2時(shí),有x1>x2,則a,b的大小關(guān)系是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
          lnx
          x
          ,其中e是自然對(duì)數(shù)的底,a∈R.
          (Ⅰ)a=1時(shí),求f(x)的單調(diào)區(qū)間、極值;
          (Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說(shuō)明理由;
          (Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
          1
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案