【題目】已知圓C:x2+y2-4x-14y+45=0及點Q(-2,3).
(1)若點P(m,m+1)在圓C上,求直線PQ的斜率.
(2)若M是圓C上任一點,求|MQ|的取值范圍.
(3)若點N(a,b)在圓C上,求的最大值與最小值.
科目:高中數(shù)學 來源: 題型:
【題目】二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)解不等式f(x)>2x+5.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為,且點
在該橢圓上。
(I)求橢圓C的方程;
(II)過橢圓C的左焦點的直線l與橢圓C相交于
兩點,若
的面積為
,求圓心在原點O且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點為
,離心率為
.點
為圓
上任意一點,
為坐標原點.
(1)求橢圓的標準方程;
(2)設直線經過點
且與橢圓
相切,
與圓
相交于另一點
,點
關于原點
的對稱點為
,證明:直線
與橢圓
相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年我國將加快階梯水價推行,原則是“;、建機制、促節(jié)約”,其中“保基本”是指保證至少80%的居民用戶用水價格不變.為響應國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調研,抽取的數(shù)據的莖葉圖如下(單位:噸):
(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;
(2)設該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據樣本估計總體的思想,分析此方案是否符合國家“保基本”政策.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,且過點
,
,
是橢圓
上異于長軸端點的兩點.
(1)求橢圓的方程;
(2)已知直線:
,且
,垂足為
,
,垂足為
,若
,且
的面積是
面積的5倍,求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com