【題目】已知函數(shù),其中
為實數(shù).
(1)若函數(shù)為定義域上的單調(diào)函數(shù),求
的取值范圍.
(2)若,滿足不等式
成立的正整數(shù)解有且僅有一個,求
的取值范圍.
【答案】(1)(2)
【解析】
(1)分析當(dāng)時的單調(diào)性,可得
的單調(diào)性,由二次函數(shù)的單調(diào)性,可得
的范圍;
(2)分別討論當(dāng),當(dāng)
時,當(dāng)
時,當(dāng)
,結(jié)合函數(shù)的單調(diào)性和最值,即可得到所求范圍.
(1)由題意,當(dāng)時,
為減函數(shù),
當(dāng)時,
,
若時,
也為減函數(shù),且
,
此時函數(shù)為定義域上的減函數(shù),滿足條件;
若時,
在
上單調(diào)遞增,則不滿足條件.
綜上所述,.
(2)由函數(shù)的解析式,可得,
當(dāng)時,
,不滿足條件;
當(dāng)時,
為定義域上的減函數(shù),僅有
成立,滿足條件;
當(dāng)時,在
上,僅有
,
對于上,
的最大值為
,
不存在滿足
,滿足條件;
當(dāng)時,在
上,不存在整數(shù)
滿足
,
對于上,
,
不存在滿足
,不滿足條件;
綜上所述,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A,B,C三點滿足。
(1)求證:A,B,C三點共線;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=
(2m+
)|
|+m2的最小值為5,求實數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,
⊥平面
,
為
的中點.
(Ⅰ)證明:∥平面
;
(Ⅱ)設(shè)二面角為60°,
=1,
=
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,且
,圓
與
軸交于點
,
,
為橢圓
上的動點,
,
面積最大值為
.
(1)求圓與橢圓
的方程;
(2)圓的切線
交橢圓
于點
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315
的棉花定為一級棉花.設(shè)計了如下莖葉圖:
(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結(jié)論(不必計算);
(2)從樣本中隨機抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;
(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
:
,
,
,
為平面內(nèi)一動點,若以線段
為直徑的圓與圓
相切.
(1)證明為定值,并寫出點
的軌跡方程;
(2)設(shè)點的軌跡為曲線
,直線
過
交
于
,
兩點,過
且與
垂直的直線與
交于
,
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時,
;當(dāng)
時,
.
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對
分類討論求得函數(shù)在
不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè)
,則
.
∵,
,∴
在
上單調(diào)遞增,
從而得在
上單調(diào)遞增,又∵
,
∴當(dāng)時,
,當(dāng)
時,
,
因此, 的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知.
∵,
,
∴.
設(shè),
則
.
∵當(dāng)時,
,∴
在
上單調(diào)遞增.
又∵,∴當(dāng)
時,
;當(dāng)
時,
.
①當(dāng)時,
,即
,這時,
;
②當(dāng)時,
,即
,這時,
.
綜上, 在
上的最大值為:當(dāng)
時,
;
當(dāng)時,
.
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的普通方程為
. 在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com