日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系xOy中,橢圓C1 的離心率為 ,拋物線C2:x2=4y的焦點F是C1的一個頂點.

          (I)求橢圓C1的方程;
          (II)過點F且斜率為k的直線l交橢圓C1于另一點D,交拋物線C2于A,B兩點,線段DF的中點為M,直線OM交橢圓C1于P,Q兩點,記直線OM的斜率為k'.
          (i)求證:kk'=﹣ ;
          (ii)△PDF的面積為S1 , △QAB的面積為是S2 , 若S1S2=λk2 , 求實數(shù)λ的最大值及取得最大值時直線l的方程.

          【答案】解:(Ⅰ)∵橢圓C1 的離心率為
          拋物線C2:x2=4y的焦點F是C1的一個頂點.
          ,解得a=2,c= ,
          ∴橢圓C1的方程為
          (Ⅱ)(i)證明:由題意設直線l的方程為y=kx+1,(k≠0),設點D(x0 , y0),
          ,得(4k2+1)x2+8kx=0,
          解得 ,∴D( ),M( ),
          ,∴kk′=﹣
          (ii)解:由(i)知D( , ),
          又F(0,1),∴|DF|= = ,
          ,得x2﹣4kx﹣4=0,
          ,
          設A(x1 , y1),B(x2 , y2),則x1+x2=4k,
          ∴|AB|= ,
          ,得(4k2+1)y2﹣1=0, ,
          設P(x3 , y3),Q(﹣x3 , ﹣y3),
          由題意得 , ,
          ∴P(﹣ ),Q( ,﹣ ),
          ∴點P到直線kx﹣y+1=0的距離為:
          d1= = ,
          點Q到直線kx﹣y+1=0的距離為:
          d2= =
          ∴S1= |DF|d1= =
          S2= = =
          = = = ,
          當且僅當3k2=k2+1,即k= 時,取等號,
          ∴λ的最大值為 ,此時直線l的方程為y=
          【解析】(Ⅰ)由橢圓的離心率為 ,拋物線C2:x2=4y的焦點F是C1的一個頂點,列出方程組,求出a=2,b=1,由此能求出橢圓C1的方程.(Ⅱ)(i)由題意設直線l的方程為y=kx+1,(k≠0),由 ,得(4k2+1)x2+8kx=0,由此求出D( , ),M( ),由此能證明kk′=﹣
          (ii)由D( ),F(xiàn)(0,1),得|DF|= ,由 ,得x2﹣4kx﹣4=0,由此利用根的判別式、韋達定理、弦長公式求出|AB|=4(k2+1),由 ,得(4k2+1)y2﹣1=0,由此利用根的判別式、韋達定理、弦長公式,求出點P到直線kx﹣y+1=0的距離,點Q到直線kx﹣y+1=0的距離,由此能λ的最大值為 ,此時直線l的方程為y=

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知坐標平面上點與兩個定點 的距離之比等于5.

          (1)求點的軌跡方程,并說明軌跡是什么圖形;

          2)記(1)中的軌跡為,過點的直線所截得的線段的長為 8,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,圓的方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為

          (1)當時,判斷直線與圓的關系

          2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 ,若f(x)=mn. (I)求f(x)的單調遞增區(qū)間;
          (II)己知△ABC的三內角A,B,C對邊分別為a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,直線的參數(shù)方程為:為參數(shù),),以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程.

          (1)①當時,寫出直線的普通方程;

          ②寫出曲線的直角坐標方程;

          (2)若點,設曲線與直線交于點,求最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x(lnx﹣2ax)有兩個極值點,則實數(shù)a的取值范圍是(
          A.(﹣∞,
          B.(0,
          C.(0,
          D.( ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.

          (1)若A∩B=,求實數(shù)a的取值范圍;

          (2)若¬p是q的充分不必要條件,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

          (1)當甲城市投資50萬元時,求此時公司總收益;

          (2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)的一段圖象如圖5所示:將的圖像向右平移個單位,可得到函數(shù)的圖象,且圖像關于原點對稱,

          (1)求的值;

          (2)求的最小值,并寫出的表達式;

          (3)若關于的函數(shù)在區(qū)間上最小值為,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案