日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直角梯形中,,平面外一點(diǎn)在平內(nèi)的射影恰在邊的中點(diǎn)上,

          1)求證:平面平面;

          2)若在線段上,且平面,求點(diǎn)到平面的距離.

          【答案】1)證明見解析;(2

          【解析】

          1)推導(dǎo)出PQ⊥平面ABCD,PQADCDBQ,從而BQAD,進(jìn)而AD⊥平面PBQ,由此能證明平面PQB⊥平面PAD

          2)連接ACBQ交于點(diǎn)N,則NAC中點(diǎn),則點(diǎn)M到平面PAB的距離是點(diǎn)C到平面PAB的距離的,求出三棱錐P-ABC的體積V=,PAB的面積為,設(shè)點(diǎn)M到平面PAB的距離為d,由VC-PAB=VP-ABC,能求出點(diǎn)M到平面PAB的距離.

          1)∵P在平面ABCD內(nèi)的射影Q恰在邊AD上,

          PQ⊥平面ABCD,

          AD平面ABCD,∴PQAD,

          Q為線段AD中點(diǎn),

          CDBQ,∴BQAD,∴AD⊥平面PBQAD平面PAD,

          ∴平面PQB⊥平面PAD

          2)連接ACBQ交于點(diǎn)N,則NAC中點(diǎn),

          ∴點(diǎn)M到平面PAB的距離是點(diǎn)C到平面PAB的距離的

          在三棱錐P-ABC中,高PQ=,底面積為

          ∴三棱錐P-ABC的體積V==,

          又△PAB中,PA=AB=2,PB=,

          ∴△PAB的面積為

          設(shè)點(diǎn)M到平面PAB的距離為d,

          VC-PAB=VP-ABC,得=,

          解得d=

          ∴點(diǎn)M到平面PAB的距離為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的長軸長是短軸長的2倍,且過點(diǎn)

          ⑴求橢圓的方程

          ⑵若在橢圓上有相異的兩點(diǎn)三點(diǎn)不共線),為坐標(biāo)原點(diǎn),且直線直線,直線的斜率滿足.

          (。┣笞C: 是定值

          (ⅱ)設(shè)的面積為,當(dāng)取得最大值時(shí)求直線的方程

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

          (I)寫出曲線與圓的極坐標(biāo)方程;

          (II)在極坐標(biāo)系中,已知射線分別與曲線及圓相交于,當(dāng)時(shí),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,直線軸的交點(diǎn)為,與拋物線的交點(diǎn)為,且

          1)求拋物線的方程;

          2)過拋物線上一點(diǎn)作兩條互相垂直的弦,試問直線是否過定點(diǎn),若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,圓錐的頂點(diǎn)為A,底面的圓心為O,BC是底面圓的一條直徑,點(diǎn)D,E在底面圓上,已知,.

          1)證明:;

          2)若二面角的大小為,求直線OC與平面ACE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

          1)若曲線在點(diǎn)(處的切線與曲線在點(diǎn)處的切線互相垂直,求函數(shù)在區(qū)間上的最大值;

          2)設(shè)函數(shù),試討論函數(shù)零點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示,已知這100位顧客中一次購物量超過7件的顧客占.

          一次購物量

          13

          47

          811

          1215

          16件及以上

          顧客數(shù)(人)

          27

          20

          10

          結(jié)算時(shí)間(/人)

          0.5

          1

          1.5

          2

          2.5

          1)確定的值,并求顧客一次購物的結(jié)算時(shí)間的平均值;

          2)從收集的結(jié)算時(shí)間不超過的顧客中,按分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人,求至少有1人的結(jié)算時(shí)間為的概率.(注:將頻率視為概率)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          1)求在區(qū)間上的值域;

          2)是否存在實(shí)數(shù),對(duì)任意給定的,在存在兩個(gè)不同的使得,若存在,求出的范圍,若不存在,說出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求曲線的極坐標(biāo)方程;

          2)已知點(diǎn),直線的極坐標(biāo)方程為,它與曲線的交點(diǎn)為,,與曲線的交點(diǎn)為,求的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案