【題目】如果對定義在R上的奇函數(shù)y=f(x),對任意兩個不相鄰的實數(shù)x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)y=f(x)為“H函數(shù)”,下列函數(shù)為H函數(shù)的是( 。
A. f(x)=sinxB. f(x)=exC. f(x)=x3﹣3xD. f(x)=x|x|
【答案】D
【解析】
根據(jù)題意,不等式等價為
,即滿足條件的函數(shù)為單調(diào)遞增函數(shù),即可得“H函數(shù)”為奇函數(shù)且在R上為增函數(shù),據(jù)此依次分析選項:綜合可得答案.
根據(jù)題意,對于所有的不相等實數(shù),
,則
恒成立,
則有恒成立,即函數(shù)
是定義在R上的增函數(shù),
則“H函數(shù)”為奇函數(shù)且在R上為增函數(shù),
據(jù)此依次分析選項:
對于A,,為正弦函數(shù),為奇函數(shù)但不是增函數(shù),不符合題意;
對于B,,為指數(shù)函數(shù),不是奇函數(shù),不符合題意;
對于C,,為奇函數(shù),但在R上不是增函數(shù),不符合題意;
對于D,,為奇函數(shù)且在R上為增函數(shù),符合題意;
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為
,作平面
與底面不平行
與棱
,
,
,
分別交于E,F,G,H,記EA,FB,GC,HD分別為
,
,
,
,若
,
,則多面體EFGHABCD的體積為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,
,現(xiàn)計劃在
上選擇一點
,新建道路
,并把
所在的區(qū)域改造成綠化區(qū)域.已知
,
.
(1)若綠化區(qū)域的面積為1
,求道路
的長度;
(2)若綠化區(qū)域改造成本為10萬元/
,新建道路
成本為10萬元/
.設(shè)
(
),當(dāng)
為何值時,該計劃所需總費用最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心是坐標(biāo)原點,它的短軸長為
,一個焦點為
,一個定點
,且
,過點
的直線與橢圓相交于兩點
.
.
(1)求橢圓的方程及離心率.
(2)如果以為直徑的圓過原點,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數(shù)f(x)= 的定義域為R.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 =n時,求7a+4b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣有兩個極值點.
(1)求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的兩個極值點分別為x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知
,
,
,
是邊
上一點,將
沿
折起,得到三棱錐
。若該三棱錐的頂點
在底面
的射影
在線段
上,設(shè)
,則
的取值范圍為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com