日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中,,則____________.

          【答案】

          【解析】

          根據(jù)余弦定理化簡,得到;由題意,在BC上取D,使得BDAD,連接AD,找出AB,設(shè)BDx,在△ADC中兩次利用余弦定理將cosAB)及cosC表示出,分別求出x建立關(guān)于a,b的方程,化簡變形后利用整體換元求出答案.

          由題意知,4cosC,

          ∴由余弦定理得,4,

          化簡可得=2,則,

          中不妨設(shè)ab,∴AB.在BC上取D,使得BDAD,連接AD,

          設(shè)BDx,則ADxDCax,ACb,

          在△ADC中, cosDACcosAB

          由余弦定理得:(ax2x2+b22xb,

          即:(b6a)x,

          解得:x.①

          又在△ADC中,由余弦定理還可得cosC,

          cosC,化簡得x,②

          由①②可得,又=2,

          聯(lián)立可得=,即=,

          兩邊同時除以,得=+6,令,則12,解得t=,

          又由題意,∴t=cosC=

          故答案為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四個小動物換座位,開始是鼠、猴、兔、貓分別坐在 1,2,3,4 號位子上(如圖), 第一次前后排動物互換座位,第二次左右列動物互換座位,.....,這樣交替進行下去,那么第 2013 次互換座位后,小兔的座位對應(yīng)的是( )

          A. 編號 1 B. 編號 2 C. 編號 3 D. 編號 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一個圓錐的底面半徑為1,高為3,在圓錐中有一個半徑為x的內(nèi)接圓柱.

          (1)試用x表示圓柱的高;

          (2)x為何值時,圓柱的側(cè)面積最大,最大側(cè)面積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】據(jù)調(diào)查,某地區(qū)有300萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當?shù)卣e極引進資本,建立各種加工企業(yè),對當?shù)氐霓r(nóng)產(chǎn)品進行深加工,同時吸收當?shù)夭糠洲r(nóng)民進入加工企業(yè)工作,據(jù)估計,如果有萬人進企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進入企業(yè)工作的農(nóng)民的人均年收入為元.

          1)在建立加工企業(yè)后,多少農(nóng)民進入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;

          2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過總?cè)藬?shù)的,當?shù)卣绾我龑?dǎo)農(nóng)民,即取何值時,能使300萬農(nóng)民的年總收入最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點,曲線在點處的切線斜率為

          (1)的值及函數(shù)的極值;

          (2)證明:當時,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量,設(shè)。

          (1)求函數(shù)的最小正周期;

          (2)當時,求函數(shù)的最大值及最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校有,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下:

          甲說:“同時獲獎”;

          乙說:“、不可能同時獲獎”;

          丙說:“獲獎”;

          丁說:“、至少一件獲獎”.

          如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

          A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在下列命題中,①的一個充要條件是與它的共軛復(fù)數(shù)相等:

          ②利用獨立性檢驗來考查兩個分類變量,是否有關(guān)系,當隨機變量的觀測值值越大,“有關(guān)系”成立的可能性越大;

          ③在回歸分析模型中,若相關(guān)指數(shù)越大,則殘差平方和越小,模型的擬合效果越好;

          ④若,是兩個相等的實數(shù),則是純虛數(shù);

          ⑤某校高三共有個班,班有人,班有人,班有人,由此推測各班都超過人,這個推理過程是演繹推理.

          其中真命題的序號為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,直線l,設(shè)圓C的半徑為1,圓心在l上.

          若圓心C也在直線上,過A作圓C的切線,求切線方程;

          若圓C上存在點M,使,求圓心C的橫坐標a取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案