日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知x,y∈R,且 ,則存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)構(gòu)成的區(qū)域面積為(
          A.4
          B.4
          C.
          D. +

          【答案】A
          【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖:對應(yīng)的區(qū)域為三角形OAB,

          若存在θ∈R,使得xcosθ+ysinθ+1=0成立,

          cosθ+ sinθ)=﹣1,

          令sinα= ,則cosθ= ,

          則方程等價為 sin(α+θ)=﹣1,

          即sin(α+θ)=﹣ ,

          ∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,

          ∴|﹣ |≤1,即x2+y2≥1,

          則對應(yīng)的區(qū)域為單位圓的外部,

          ,解得 ,即B(2,2 ),

          A(4,0),則三角形OAB的面積S= × =4 ,

          直線y= x的傾斜角為 ,

          則∠AOB= ,即扇形的面積為

          則P(x,y)構(gòu)成的區(qū)域面積為S=4 ,

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知三棱錐P﹣ABC的底面是等腰直角三角形,且∠ACB= ,側(cè)面PAB⊥底面ABC,AB=PA=PB=2.則這個三棱錐的三視圖中標(biāo)注的尺寸x,y,z分別是(
          A. ,1,
          B. ,1,1
          C.2,1,
          D.2,1,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(x﹣1)ex+ (其中a∈R)有兩個零點,則a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則(
          A.f(x)在(0, )單調(diào)遞增
          B.f(x)在( )單調(diào)遞減
          C.f(x)在( , )單調(diào)遞增
          D.f(x)在( ,π)單調(diào)遞增

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
          (Ⅰ)求證:AF∥平面PCE;
          (Ⅱ)若二面角P﹣CD﹣B為45°,AD=2,CD=3,求點F到平面PCE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a﹣x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
          (1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
          (2)已知有窮等差數(shù)列{bn}的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
          (3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P﹣ABC中,AC=BC=2,∠ACB=90°,側(cè)面PAB為等邊三角形,側(cè)棱
          (Ⅰ)求證:PC⊥AB;
          (Ⅱ)求證:平面PAB⊥平面ABC;
          (Ⅲ)求二面角B﹣AP﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在2013年至2016年期間,甲每年6月1日都到銀行存入m元的一年定期儲蓄,若年利率為q保持不變,且每年到期的存款本息自動轉(zhuǎn)為新的一年定期,到2017年6月1日甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是(
          A.m(1+q)4
          B.m(1+q)5
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的離心率為2,分別是雙曲線的左、右焦點,點,點為線段上的動點,當(dāng)取得最小值和最大值時,的面積分別為,則____________.

          查看答案和解析>>

          同步練習(xí)冊答案