【題目】已知函數(shù),函數(shù)
,下列選項(xiàng)正確的是( )
A.點(diǎn)是函數(shù)
的零點(diǎn)
B.,使
C.函數(shù)的值域?yàn)?/span>
D.若關(guān)于的方程
有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍是
【答案】BC
【解析】
利用求導(dǎo)的方法,確定函數(shù)的單調(diào)區(qū)間、求出函數(shù)極值、零點(diǎn),分別畫(huà)出和
的圖像,進(jìn)而可以確定選項(xiàng)AD不正確,BC為正確答案.
圖像
圖像
對(duì)于選項(xiàng)A,0是函數(shù)的零點(diǎn),零點(diǎn)不是一個(gè)點(diǎn),所以A錯(cuò)誤.
對(duì)于選項(xiàng)B,當(dāng)時(shí),
,可得,
當(dāng)時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增;
所以,當(dāng)時(shí),
當(dāng)時(shí),
,可得,
當(dāng)時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增;
所以,當(dāng)時(shí),
,綜上可得,選項(xiàng)B正確.
對(duì)于選項(xiàng)C,,選項(xiàng)C正確.
對(duì)于選項(xiàng)D,關(guān)于的方程
有兩個(gè)不相等的實(shí)數(shù)根
關(guān)于
的方程
有兩個(gè)不相等的實(shí)數(shù)根
關(guān)于
的方程
有一個(gè)非零的實(shí)數(shù)根
函數(shù)
與
有一個(gè)交點(diǎn),且
當(dāng)時(shí),
當(dāng)變化時(shí),
,
的變化情況如下:
0 | 0 | ||||
極大值 | 極小值 |
極大值,極小值
當(dāng)時(shí),
當(dāng)變化時(shí),
,
的變化情況如下:
1 | 2 | |||
0 | ||||
極小值 |
極小值
綜上可得,或
,
的取值范圍是
,D不正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體被經(jīng)過(guò)
的動(dòng)平面
所截,
分別與棱
,
交于點(diǎn)
,
,得到截面
,已知
,
.
(1)求證:;
(2)若直線與截面
所成角的正弦值為
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體棱長(zhǎng)為
,如圖,
為
上的動(dòng)點(diǎn),
平面
.下面說(shuō)法正確的是( )
A.直線與平面
所成角的正弦值范圍為
B.點(diǎn)與點(diǎn)
重合時(shí),平面
截正方體所得的截面,其面積越大,周長(zhǎng)就越大
C.點(diǎn)為
的中點(diǎn)時(shí),若平面
經(jīng)過(guò)點(diǎn)
,則平面
截正方體所得截面圖形是等腰梯形
D.己知為
中點(diǎn),當(dāng)
的和最小時(shí),
為
的中點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是坐標(biāo)系的原點(diǎn),
是拋物線
的焦點(diǎn),過(guò)點(diǎn)
的直線交拋物線于
,
兩點(diǎn),弦
的中點(diǎn)為
,
的重心為
.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)(1)中的軌跡與軸的交點(diǎn)為
,當(dāng)直線
與
軸相交時(shí),令交點(diǎn)為
,求四邊形
的面積最小時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),已知函數(shù)
,
,
,記函數(shù)
和
的零點(diǎn)個(gè)數(shù)分別是
,
,則( )
A.若,則
B.若
,則
C.若,則
D.若
,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),其中
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的兩個(gè)極值點(diǎn)為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面,B,
,
,且
,
,且
,則下列敘述錯(cuò)誤的是( )
A.直線與
是異面直線
B.直線在
上的射影可能與
平行
C.過(guò)有且只有一個(gè)平面與
平行
D.過(guò)有且只有一個(gè)平面與
垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
,
,則下列選項(xiàng)中的條件使得
僅有一個(gè)零點(diǎn)的有( )
A.為奇函數(shù)B.
C.,
D.
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店,每天以200元的價(jià)格從總店購(gòu)進(jìn)早餐,然后以每份10元的價(jià)格出售.40份以?xún)?nèi),總店收成本價(jià)每份5元,當(dāng)天不能出售的早餐立即以1元的價(jià)格被總店回收,超過(guò)40份的未銷(xiāo)售的部分總店成本價(jià)回收,然后進(jìn)行環(huán)保處理.如果銷(xiāo)售超過(guò)40份,則超過(guò)40份的利潤(rùn)需上繳總店.該快餐連鎖店記錄了100天早餐的銷(xiāo)售量(單位:份),整理得下表:
日銷(xiāo)售量 | 25 | 30 | 35 | 40 | 45 | 50 |
頻數(shù) | 10 | 16 | 28 | 24 | 14 | 8 |
完成下列問(wèn)題:
(1)寫(xiě)出每天獲得利潤(rùn)與銷(xiāo)售早餐份數(shù)
(
)的函數(shù)關(guān)系式;
(2)估計(jì)每天利潤(rùn)不低于150元的概率;
(3)估計(jì)該快餐店每天的平均利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com