日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若函數(shù)fx)=x3﹣3x在區(qū)間(a,6﹣a2)上有最小值,則實數(shù)a的取值范圍是______

          【答案】

          【解析】

          根據(jù)題意求出函數(shù)的導數(shù),因為函數(shù) fx)在區(qū)間(a,6﹣a2)上有最小值,所以f′(x)先小于0然后再大于0,所以結合二次函數(shù)的性質(zhì)可得:a<1<5﹣a2,進而求出正確的答案.

          由題意可得:函數(shù) fx)=x3﹣3x,

          所以f′(x)=3x2﹣3.

          f′(x)=3x2﹣3=0可得,x=±1;

          上遞增,在(-1,1)上遞減,在(1,+)上遞增,

          因為函數(shù) fx)在區(qū)間(a,6﹣a2)上有最小值,則其最小值必為f(1),

          1a,6﹣a2)即a<1<6﹣a2,

          又結合函數(shù)的性質(zhì)可得:fa)=a3﹣3af(1)=﹣2,且6﹣a2a>0,

          聯(lián)立解得:﹣2≤a<1.

          故答案為:[﹣2,1).

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】f(x)=(1﹣m)lnx++nx(m,n是常數(shù)).

          (1)若m=0,且f(x)在(1,2)上單調(diào)遞減,求n的取值范圍;

          (2)若m>0,且n=﹣1,求f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得最大利潤是(
          A.12萬元
          B.20萬元
          C.25萬元
          D.27萬元

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】目前,學案導學模式已經(jīng)成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:

          已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.

          參考公式:,其中

          (1)請將上表補充完整(不用寫計算過程);

          (2)試運用獨立性檢驗的思想方法有多大的把握認為學生的學習成績與對待學案的使用態(tài)度有關?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在數(shù)列{an}中,已知a1= ,an+1= an ,n∈N* , 設Sn為{an}的前n項和.
          (1)求證:數(shù)列{3nan}是等差數(shù)列;
          (2)求Sn
          (3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】據(jù)統(tǒng)計,僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網(wǎng)點人員流動性也較強,各快遞公司需要經(jīng)常招聘快遞員,保證業(yè)務的正常開展.下面是50天內(nèi)甲、乙兩家快遞公司的快遞員的每天送貨單數(shù)統(tǒng)計表:

          送貨單數(shù)

          30

          40

          50

          60

          天數(shù)

          10

          10

          20

          10

          5

          15

          25

          5

          已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.

          (1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數(shù)的函數(shù)關系式;

          (2)若將頻率視為概率,回答下列問題:

          記甲快遞公司的快遞員的日工資為(單位:元),求的分布列和數(shù)學期望;

          小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(1)求直線yx被圓x2+(y-2)2=4截得的弦長;

          (2)已知圓,求過點的圓的切線方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】是定義域為的函數(shù)的導函數(shù),,則的解集為( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在正項等比數(shù)列{an}和正項等差數(shù)列{bn}中,已知a1 , a2017的等比中項與b1 , b2017的等差中項相等,且 + ≤1,當a1009取得最小值時,等差數(shù)列{bn}的公差d的取值集合為(
          A.{d|d≥ }
          B.{d|0<d< }
          C.{ }
          D.{d|d≥ }

          查看答案和解析>>

          同步練習冊答案