日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)為實數(shù),已知,

          1)若函數(shù),求的值;

          2)當(dāng)時,求證:函數(shù)上是單調(diào)遞增函數(shù);

          3)若對于一切,不等式恒成立,求的取值范圍.

          【答案】1;(2)證明過程見解析;(3.

          【解析】

          1)直接把代入函數(shù)解析式,得到方程,求出的值;

          2)求出函數(shù)的解析式,用函數(shù)單調(diào)性的定義進行證明即可;

          3)分類討論,把函數(shù)的解析式,轉(zhuǎn)化為二次函數(shù)解析式、分式類型函數(shù)解析式形式,利用它們的單調(diào)性求出的取值范圍.

          1

          2,當(dāng)時,解析式可化簡為:

          ,設(shè)上任意兩個不相等的實數(shù),則有,

          ,

          因為,所以,因此有

          ,所以函數(shù)上的遞增函數(shù);

          3)當(dāng)時,而,所以,因為,所以有

          恒成立,設(shè),對稱軸為:,故上是增函數(shù),要想(*)恒成立,只需

          該不等式恒成立,故

          當(dāng)時, 此時函數(shù)是單調(diào)遞增函數(shù),要想上恒成立,只需這與矛盾,故不成立;

          當(dāng)時,,

          當(dāng)時,函數(shù)是單調(diào)遞增函數(shù),當(dāng)時,由(2)可知函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)時,最小值為

          要想上恒成立,只需,而,所以,綜上所述:的取值范圍為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          )求函數(shù)的單調(diào)區(qū)間;

          )若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

          )若,使)成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為紀念重慶黑山谷晉升國家5A級景區(qū)五周年,特發(fā)行黑山谷紀念郵票,從2017年11月1日起開始上市.通過市場調(diào)查,得到該紀念郵票在一周內(nèi)每1張的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:

          上市時間x天

          1

          2

          6

          市場價y元

          5

          2

          10

          (Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀念郵票的市場價y(單位:元)與上市時間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對數(shù)函數(shù),并求出函數(shù)的解析式;

          (Ⅱ)利用你選取的函數(shù),求黑山谷紀念郵票市場價最低時的上市天數(shù)及最低的價格.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【選修4-4:坐標系與參數(shù)方程】

          在平面直角坐標系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

          (1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;

          (2)若直線為參數(shù))與相交于兩點,且,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗公式:P=,Q= .今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          討論函數(shù)的單調(diào)性;

          當(dāng)時,求函數(shù)在區(qū)間上的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

          組別

          2

          3

          5

          15

          18

          12

          0

          5

          10

          10

          7

          13

          (1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

          (2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.

          ①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;

          ②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:

          紅包金額(單位:元)

          10

          20

          概率

          現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

          附表及公式:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合,如果對于的每一個含有個元素的子集,中必有個元素的和等于,稱正整數(shù)為集合的一個相關(guān)數(shù)

          1)當(dāng)時,判斷是否為集合相關(guān)數(shù),說明理由;

          2)若為集合相關(guān)數(shù),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),其中.

          (Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)性;

          (Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;

          (Ⅲ)若對于任意的,不等式上恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案