日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.

          1)若平面平面,求證:平面平面;

          2)若二面角,求直線與平面所成角的正弦值.

          【答案】1)見解析(2

          【解析】

          1)取的中點(diǎn),的中點(diǎn),連接.可證明,結(jié)合,可知四邊形為平行四邊形.進(jìn)而由及平面與平面平行的判定定理證明平面平面;

          2)連結(jié),可知即為二面角的平面角.為原點(diǎn)建立空間直角坐標(biāo)系.由線段關(guān)系寫出各個(gè)點(diǎn)的坐標(biāo),求得平面的法向量,即可根據(jù)直線與平面夾角的向量關(guān)系求得直線與平面所成角的正弦值.

          1)證明:取的中點(diǎn),的中點(diǎn),連接.如下圖所示:

          因?yàn)?/span>,且平面平面,

          所以平面,

          同理平面,

          所以,

          又因?yàn)?/span>,

          所以四邊形為平行四邊形,

          所以,平面,

          , 平面,

          又因?yàn)?/span>交于點(diǎn)

          所以平面平面.

          2)連結(jié),,

          所以為二面角的平面角,

          所以

          建立如圖所示的空間直角坐標(biāo)系,

          所以

          設(shè)平面的一個(gè)法向量是,

          ,,

          ,,

          又因?yàn)?/span>,

          所以,

          即所求的角的正弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直四棱柱中,底面為等腰梯形,,,且為棱中點(diǎn),為棱中點(diǎn).

          (1)證明:平面;

          (2)求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,討論函數(shù)的單調(diào)性;

          2)設(shè),是否存在實(shí)數(shù),對(duì)任意,,,有恒成立?若存在,求出的范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線與拋物線交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).

          (1)求的方程.

          (2)直線經(jīng)過的焦點(diǎn)不與軸垂直,交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),試問在軸上是否存在點(diǎn),使為定值?若存在,求該定值及的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù)Fx=min{2|x1|,x22ax+4a2},

          其中min{p,q}=

          )求使得等式Fx=x22ax+4a2成立的x的取值范圍;

          )()求Fx)的最小值ma);

          )求Fx)在區(qū)間[0,6]上的最大值Ma.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

          (Ⅱ)當(dāng)時(shí),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面,,,,為棱的中點(diǎn).

          (1)求證:平面;

          (2)求點(diǎn)到平面的距離,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】哈三中團(tuán)委組織了古典詩詞的知識(shí)競賽,從參加考試的學(xué)生中抽出60名學(xué)生(男女各30名),將其成績分成六組,,,,其部分頻率分布直方圖如圖所示.

          )求成績?cè)?/span>的頻率,補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的眾數(shù)和中位數(shù);

          )從成績?cè)?/span>的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率;

          )我們規(guī)定學(xué)生成績大于等于80分時(shí)為優(yōu)秀,經(jīng)統(tǒng)計(jì)男生優(yōu)秀人數(shù)為4人,補(bǔ)全下面表格,并判斷是否有99%的把握認(rèn)為成績是否優(yōu)秀與性別有關(guān)?

          優(yōu)秀

          非優(yōu)秀

          合計(jì)

          4

          30

          30

          合計(jì)

          60

          0.025

          0.010

          0.005

          0.001

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

          (1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

          (2)設(shè)點(diǎn)上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案