【題目】已知數(shù)列滿足
.
(1)證明:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項和為
,若
,且對任意的正整數(shù)n,都有
,求整數(shù)
的值;
(3)設(shè)數(shù)列滿足
,若
,且存在正整數(shù)s,t,使得
是整數(shù),求
的最小值.
【答案】(1)證明見解析;(2)2;(3)
【解析】
(1)令中的
為
,又得一式,將兩式做差變形,利用等差中項進(jìn)行證明;
(2)利用放縮法和裂項相消法在數(shù)列求和中的應(yīng)用進(jìn)行證明.
(3)利用假設(shè)法的應(yīng)用和存在性問題的應(yīng)用求出最小值.
解:(1)因為①
所以時,
②
①-②得,
所以
即
所以數(shù)列為等差數(shù)列;
(2)因為,所以
的公差為1,
因為對任意的正整數(shù),都有
,
所以,所以
,即
,
所以或2,
當(dāng)時,
,
,
,
所以,這與題意矛盾,所以
,
當(dāng)時,
,
,
,
恒成立,
因為,
,
綜上,的值為2.
(3)因為,所以
的公差為
,
所以,
所以,
由題意,設(shè)存在正整數(shù)s,t,使得,
,
則,即
,
因為,
所以是偶數(shù),
所以,
所以,
當(dāng)時,
,
所以存在,
綜上,的最小值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于數(shù)列,給出下列命題:①數(shù)列
滿足
,則數(shù)列
為公比為2的等比數(shù)列;②“
,
的等比中項為
”是“
”的充分不必要條件:③數(shù)列
是公比為
的等比數(shù)列,則其前
項和
;④等比數(shù)列
的前
項和為
,則
,
,
成等比數(shù)列,其中假命題的序號是( )
A.②B.②④C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進(jìn)行選拔測試,若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為常數(shù).
(1)當(dāng)時,求函數(shù)
的圖象在點
處的切線方程;
(2)若函數(shù)有兩個不同的零點
,
,
①當(dāng)時,求
的最小值;
②當(dāng)時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機(jī)和軍用無人機(jī)等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測站觀測到一架參閱直升飛機(jī)以千米/小時的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機(jī)在北偏西
的方向上,1分鐘后第二次觀測到該飛機(jī)在北偏東
的方向上,仰角為
,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標(biāo)有第0站(出發(fā)地),在第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(失敗收容地)或跳到第100站(勝利大本營),該游戲結(jié)束. 設(shè)棋子跳到第站的概率為
.
(1)求,
,
;
(2)寫出與
、
的遞推關(guān)系
);
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)用表示
中的最大值,若函數(shù)
只有一個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,
,
,設(shè)
,
,其中
為坐標(biāo)原點.
(1)設(shè)點在
軸上方,到線段
所在直線的距離為
,且
,求
和線段
的大;
(2)設(shè)點為線段
的中點,若
,且點
在第二象限內(nèi),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓
的左頂點為
,過
的直線交橢圓
于另一點
,直線
交
軸于點
,且
.
(1)求橢圓的離心率;
(2)若橢圓的焦距為
,
為橢圓
上一點,線段
的垂直平分線
在
軸上的截距為
(
不與
軸重合),求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com