【題目】在平面直角坐標(biāo)系中,對于點(diǎn)
、直線
,我們稱
為點(diǎn)
到直線
的方向距離.
(1)設(shè)橢圓上的任意一點(diǎn)
到直線
,
的方向距離分別為
、
,求
的取值范圍.
(2)設(shè)點(diǎn)、
到直線
的方向距離分別為
、
,試問是否存在實(shí)數(shù)
,對任意的
都有
成立?若存在,求出
的值;不存在,說明理由.
(3)已知直線和橢圓
,設(shè)橢圓
的兩個焦點(diǎn)
,
到直線
的方向距離分別為
、
滿足
,且直線
與
軸的交點(diǎn)為
、與
軸的交點(diǎn)為
,試比較
的長與
的大小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,當(dāng)
時,恒有
;
(1)求的表達(dá)式;
(2)設(shè)不等式,
的解集為
,且
,求實(shí)數(shù)
的取值范圍;
(3)若方程的解集為
,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放(
且
)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度
(克/升)隨著時間
(分鐘)變化的函數(shù)關(guān)系式近似為
,其中
,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求
的最小值(精確到0.1,參考數(shù)據(jù):
取
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的右支上的一點(diǎn)P作一直線l與兩漸近線交于A、B兩點(diǎn),其中P是
的中點(diǎn);
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為時,求直線l的方程;
(3)求證:是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,若
是正整數(shù),且
,
,則稱
為“D-數(shù)列”.
(1) 舉出一個前五項(xiàng)均不為零的“D-數(shù)列”(只要求依次寫出該數(shù)列的前五項(xiàng));
(2) 若“D-數(shù)列”中,
,
,數(shù)列
滿足
,
,寫出數(shù)列
的通項(xiàng)公式,并分別判斷當(dāng)
時,
與
的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);
(3) 證明: 設(shè)“D-數(shù)列”中的最大項(xiàng)為
,證明:
或
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列前
項(xiàng)和為
(1)若首項(xiàng),且對于任意的正整數(shù)
均有
,(其中
為正實(shí)常數(shù)),試求出數(shù)列
的通項(xiàng)公式.
(2)若數(shù)列是等比數(shù)列,公比為
,首項(xiàng)為
,
為給定的正實(shí)數(shù),滿足:①
,且
②對任意的正整數(shù)
,均有
;試求函數(shù)
的最大值(用
和
表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù)
.
(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)
的值;
(2)若,求函數(shù)
的最小值;
(3)對于函數(shù),在定義域內(nèi)給定區(qū)間
,如果存在
,滿足
,則稱函數(shù)
是區(qū)間
上的“平均值函數(shù)”,
是它的一個“均值點(diǎn)”.如函數(shù)
是
上的平均值函數(shù),
就是它的均值點(diǎn).現(xiàn)有函數(shù)
是區(qū)間
上的平均值函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+1|(a∈R),g(x)=|2x﹣1|+2.
(1)若a=1,證明:不等式f(x)≤g(x)對任意的x∈R成立;
(2)若對任意的m∈R,都有t∈R,使得f(m)=g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動點(diǎn)到定點(diǎn)
與定直線
的距離之和為4.
(1)求點(diǎn)的軌跡方程,并畫出方程的曲線草圖;
(2)記(1)得到的軌跡為曲線,問曲線
上關(guān)于點(diǎn)
(
)對稱的不同點(diǎn)有幾對?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com