日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為

          (I)求橢圓C的方程;

          (II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

           

          【答案】

          (I) .(II).(III)直線縱截距的范圍是.

          【解析】

          試題分析:(I)由題意聯(lián)立方程組

          ,

          根據(jù),即可得到的取值范圍是.

          (II)設(shè)直線方程為,

          通過(guò)聯(lián)立 

          設(shè)應(yīng)用韋達(dá)定理,結(jié)合的中點(diǎn),

          得到,可建立的方程, 從而由得到使問(wèn)題得解.

          試題解析:(I)由題意知.

          ,

          所以,解得,

          所以求的取值范圍是.

          (II)設(shè)直線方程為,

          整理得,

          化簡(jiǎn)得

          設(shè)

          的中點(diǎn),所以

          因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031504115056457890/SYS201403150413569082162675_DA.files/image015.png">,所以

          ,化簡(jiǎn)得

          ,

          所以

          ,所以

          .

          考點(diǎn):橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給定橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
          a2+b2
          的圓是橢圓C的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2
          2
          ,0
          ),其短軸上的一個(gè)端點(diǎn)到F2距離為
          3

          (Ⅰ)求橢圓C及其“伴隨圓”的方程;
          (Ⅱ)若過(guò)點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
          2
          ,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點(diǎn)N(x0,y0),則稱(chēng)直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,

             (1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱(chēng)直線與橢圓相離、相切、相交),并說(shuō)明理由;

             (2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫(xiě)出這個(gè)命題的逆命題,判斷此逆命題的真假,說(shuō)明理由;

             (3)若N(x0,y0)在橢圓C的內(nèi)部,過(guò)N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè),,問(wèn)是否為定值?說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省黃岡中學(xué)高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分13分)
          給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
          (Ⅰ)求橢圓及其“伴隨圓”的方程;
          (Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
          (Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分13分)

          給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為

          (Ⅰ)求橢圓及其“伴隨圓”的方程;

          (Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;

          (Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案