日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè) 的內(nèi)角 , 所對(duì)的邊分別為 , , ,且 , .

          (1)當(dāng) 時(shí),求 的值;

          (2)當(dāng)的面積為 時(shí),求的周長(zhǎng).

          【答案】(1) (2)8

          【解析】試題分析:(1)由 , ,由正弦定理得到;(2)根據(jù)面積公式得到,再由余弦定理得到,進(jìn)而得到.

          解析:

          (1)因?yàn)?/span> ,所以

          由正弦定理 ,可得

          (2)因?yàn)?/span> 的面積

          所以

          由余弦定理

          ,即

          所以

          所以

          所以, 的周長(zhǎng)為

          型】解答
          結(jié)束】
          18

          【題目】如圖,在四棱錐 中,底面 是平行四邊形, , , 底面.

          (1)求證: 平面 ;

          (2)若 的中點(diǎn),求直線 與平面 所成角的正弦值.

          【答案】(1)見(jiàn)解析(2)

          【解析】試題分析:(1)根據(jù)三角形的邊長(zhǎng)關(guān)系得到BD=3, , ,根據(jù)線面垂直的性質(zhì)得到,進(jìn)而得到線面垂直;2)建立空間坐標(biāo)系得到直線的方向向量,和面的法向量,再由向量的夾角公式得到線面角.

          解析:

          (1)在中由余弦定理得

          ,∴ ,即

          底面 ,

          所以, ,又

          所以, 平面.

          (2)以 為原點(diǎn),分別以 、 軸、 軸、 軸,建立空間直角坐標(biāo)系,則 , ,

          所以, , .

          設(shè)平面 的法向量為

          , ,得 ,

          , ,即

          設(shè)直線 與平面 所成角為 ,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計(jì)),上下底面均為邊長(zhǎng)為5的正三角形,側(cè)棱為10,側(cè)面AA1B1B水平放置,如圖所示,點(diǎn)DE、F、G分別在棱CA、CB、C1B1、C1A1,水面恰好過(guò)點(diǎn)DE,FC,CD=2

          (1)證明:DEAB;

          ()若底面ABC水平放置時(shí),求水面的高

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對(duì)數(shù)的底數(shù).

          (1)求實(shí)數(shù)的值;

          (2)探究函數(shù)上的單調(diào)性,并證明你的結(jié)論;

          (3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)的圖像與軸的交點(diǎn)為,在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)與軸交點(diǎn)分別為

          (1)求的解析式;

          (2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖像沿軸正方向平移個(gè)單位,得到函數(shù)的圖像,求的解析式;

          (3)在(2)的條件下求函數(shù)上的值域。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線 )的焦點(diǎn)為 ,已知點(diǎn) , 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足 .過(guò)弦 的中點(diǎn) 作拋物線準(zhǔn)線的垂線 ,垂足為 ,則 的最大值為__________

          【答案】1

          【解析】設(shè),在三角形ABF中,用余弦定理得到

          故最大值為1.

          故答案為:1.

          點(diǎn)睛:本題主要考查了拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來(lái)處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化。

          型】填空
          結(jié)束】
          17

          【題目】設(shè) 的內(nèi)角 所對(duì)的邊分別為 , , ,且 , .

          (1)當(dāng) 時(shí),求 的值;

          (2)當(dāng)的面積為 時(shí),求的周長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬(wàn)元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出 萬(wàn)元,以后每年的支出比上一年增加了 萬(wàn)元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬(wàn)元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬(wàn)元).

          (1)該廠從第幾年開(kāi)始盈利?

          (2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.

          【答案】(1) 從第 開(kāi)始盈利(2) 該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元

          【解析】試題分析(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2根據(jù)公式得到,由均值不等式得到函數(shù)最值.

          解析:

          由題意可知前 年的純利潤(rùn)總和

          (1)由 ,即 ,解得

          知,從第 開(kāi)始盈利.

          (2)年平均純利潤(rùn)

          因?yàn)?/span> ,即

          所以

          當(dāng)且僅當(dāng) ,即 時(shí)等號(hào)成立.

          年平均純利潤(rùn)最大值為 萬(wàn)元,

          故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元.

          型】解答
          結(jié)束】
          21

          【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 , .

          (1)求數(shù)列 通項(xiàng)公式;

          (2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過(guò)點(diǎn)A作⊙O的切線EP交CB的延長(zhǎng)線于P,∠PAB=35°.

          (1)若BC是⊙O的直徑,求∠D的大小;
          (2)若∠PAB=35°,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

          (2)當(dāng)時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某運(yùn)輸公司有7輛可載型卡車(chē)與4輛可載型卡車(chē),9名駕駛員,建筑某段高速公路中,此公司承包了每天至少搬運(yùn)瀝青的任務(wù),已知每輛卡車(chē)每天往返的次數(shù)為型車(chē)8, 型車(chē)6次,每輛卡車(chē)每天往返的成本費(fèi)為型車(chē)160元, 型車(chē)252元,每天派出型車(chē)和型車(chē)各多少輛公司所花的成本費(fèi)最低?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案