日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          如圖,四棱錐的底面為矩形,且
          ,,(Ⅰ)平面與平面是否垂直?并說明理由;(Ⅱ)求直線與平面所成角的正弦值. 

          (I)略
          (Ⅱ)直線PC與平面ABCD所成角的正弦值

          解析

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:解答題

          如圖,四面體ABCD中,O、E分別是BD、BC的中點,

          (I)求證:平面BCD;
          (II)求異面直線AB與CD所成角的余弦值;
          (III)求點E到平面ACD的距離。

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          (本小題滿分13分)
          如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.

          (Ⅰ)求證:AD⊥平面SBC;
          (Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結論.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          在四棱錐V-ABCD中,底面ABCD是正方形,側面VAD是正三角形,平面VAD⊥底面ABCD.

          (Ⅰ)證明AB⊥平面VAD;
          (Ⅱ)求面VAD與面VDB所成二面角的大小。

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          (本小題滿分12分)如圖所示,正方形和矩形所在平面相互垂直,的中點. 
          (1)求證:;
          (2)若直線與平面成45o角,求異面直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          (本小題滿分12分)四棱錐的底面是正方形,,點E在棱PB上.若AB=,
          (Ⅰ)求證:平面;   
          (Ⅱ)若E為PB的中點時,求AE與平面PDB所成的角的大小.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          (本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE,G是BC的中點.沿EF將梯形ABCD翻折,
          使平面AEFD⊥平面EBCF (如圖).
          (1)當時,求證:BD⊥EG ;
          (2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;
          (3)當取得最大值時,求二面角D-BF-C的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設Q是CC1上的中點,求證:平面D1BQ∥平面PAO.

          查看答案和解析>>

          科目:高中數學 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

          (Ⅰ)求證:平面PQB⊥平面PAD;
          (Ⅱ)設PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.

          查看答案和解析>>

          同步練習冊答案