日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點

          (1)是正三角形(是坐標原點),求此三角形的邊長;

          (2) 若,求直線的方程

          (3)進行討論,請你寫出符合條件的直線數(shù)(直接寫出結論).

          【答案】(1)(2)(3)見解析

          【解析】試題分析:(1)若是正三角形(是坐標原點),求出的坐標,即可求出此三角形的邊長;(2)若,設直線,分類討論,即可求出直線的方程;(3)根據(jù)直線與圓的位置關系,可得結論.

          試題解析:(1)設的邊長為,則的坐標為

          所以所以

          此三角形的邊長為

          (2)設直線

          時, 符合題意

          時,

          ,

          ,

          ,

          ,

          ,舍去

          綜上所述,直線的方程為:

          (3) 時,共2條;

          時,共4條;

          時,共1條.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動圓與圓 相切,且與圓 相內切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

          (Ⅰ)求曲線的方程;

          (Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

          (Ⅲ)記的面積為 的面積為,令,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,已知以為圓心的圓的方程為: ,以為圓心的圓的方程為:

          (1)若過點的直線沿軸向左平移3個單位,沿軸向下平移4個單位后,回到原來的位置,求直線被圓截得的弦長;

          (2)圓是以1為半徑,圓心在圓 上移動的動圓 ,若圓上任意一點分別作圓的兩條切線,切點為,求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標為14,且 ,點Q是邊AB上一點,且
          (1)求實數(shù)λ的值與點P的坐標;
          (2)求點Q的坐標;
          (3)若R為線段OQ上的一個動點,試求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖, 分別為直角三角形的直角邊和斜邊的中點,沿折起到的位置,連結、, 的中點.

          1)求證: 平面;(2)求證:平面平面

          3)求證: 平面

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)的定義域是,對于以下四個命題:

          (1)是奇函數(shù),則也是奇函數(shù);

          (2)是周期函數(shù),則也是周期函數(shù);

          (3)是單調遞減函數(shù),則也是單調遞減函數(shù);

          (4) 若函數(shù)存在反函數(shù),且函數(shù)有零點,則函數(shù)也有零點.

          其中正確的命題共有

          A. 1個 B. 2個 C. 3個 D. 4個

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn1=an+1(n≥2).
          (1)求證:數(shù)列{an+1}是等比數(shù)列;
          (2)求數(shù)列{an},{bn}的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸上分別修建觀光長廊AC,其中是寬長廊,造價是元/米, 是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.

          (1) 若規(guī)劃在三角形區(qū)域內開發(fā)水上游樂項目,要求的面積最大,那么的長度分別為多少米?

          (2) 在(1)的條件下,建直線通道還需要多少錢?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在四棱柱中,底面,底面為菱形,交點,已知,

          (I)求證:平面

          (II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.

          (III)設點內(含邊界),且,求所有滿足條件的點構成的圖形,并求的最小值.

          查看答案和解析>>

          同步練習冊答案