日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某運(yùn)動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):

          據(jù)此估計(jì),該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為(

          A. B.

          C. D.

          【答案】C

          【解析】

          根據(jù)隨機(jī)數(shù)表,列舉出該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的情況,結(jié)合概率計(jì)算公式即可求解.

          由題意可得,表示“該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的情況”有:207,815,429,027,954,409,472,460,共8組數(shù)據(jù),

          所以該運(yùn)動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為.

          故選C

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某漁業(yè)公司今年初用98萬元購進(jìn)一艘漁船進(jìn)行捕撈,第一年需要各種費(fèi)用12萬元,從第二年開始包括維修費(fèi)在內(nèi),每年所需費(fèi)用均比上一年增加4萬元,該船每年捕撈的總收入為50萬元.

          (1)該船捕撈第幾年開始盈利?

          (2)若該船捕撈年后,年平均盈利達(dá)到最大值,該漁業(yè)公司以24萬元的價(jià)格將捕撈船賣出;求并求總的盈利值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列幾個(gè)命題:①若方程的兩個(gè)根異號,則實(shí)數(shù);②函數(shù)是偶函數(shù),但不是奇函數(shù);③函數(shù) 上是減函數(shù),則實(shí)數(shù)a的取值范圍是;④ 方程 的根滿足,則m滿足的范圍,其中不正確的是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[2018·龍巖質(zhì)檢]已知,

          1)討論的單調(diào)性;

          2)若,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為拋物線上的兩點(diǎn),的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.

          (1)求拋物線的方程;

          (2)已知點(diǎn),為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線的斜率分別為,,且滿足,記拋物線、處的切線交于點(diǎn),線段的中點(diǎn)為,若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

          (Ⅰ)證明: ;

          (Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

          【答案】(Ⅰ)證明見解析;(Ⅱ) .

          【解析】試題分析】(I)的中點(diǎn)為,連接.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

          試題解析】

          證明:(Ⅰ)取的中點(diǎn)為,連接,,

          為等邊三角形,∴.

          底面中,可得四邊形為矩形,∴

          ,∴平面,

          平面,∴.

          ,所以.

          (Ⅱ)由面,,

          平面,所以為棱錐的高,

          ,知,

          .

          由(Ⅰ)知,,∴.

          .

          ,可知平面,∴,

          因此.

          ,

          的中點(diǎn),連結(jié),則,

          .

          所以棱錐的側(cè)面積為.

          型】解答
          結(jié)束】
          20

          【題目】已知圓經(jīng)過橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), 是橢圓上的兩點(diǎn),它們在軸兩側(cè),且的平分線在軸上, .

          (Ⅰ)求橢圓的方程;

          (Ⅱ)證明:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)二次函數(shù)滿足下列條件:當(dāng)時(shí),的最小值為0,且成立;當(dāng)時(shí),恒成立.

          1)求的解析式;

          2)若對,不等式恒成立、求實(shí)數(shù)的取值范圍;

          3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),只要當(dāng)時(shí),就有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為落實(shí)國家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長

          (1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域

          (2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢.設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.

          (1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;

          (2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價(jià)格-每件進(jìn)價(jià))

          查看答案和解析>>

          同步練習(xí)冊答案