【題目】下列幾個命題:①若方程的兩個根異號,則實數(shù)
;②函數(shù)
是偶函數(shù),但不是奇函數(shù);③函數(shù)
在
上是減函數(shù),則實數(shù)a的取值范圍是
;④ 方程
的根
滿足
,則m滿足的范圍
,其中不正確的是( )
A.①B.②C.③D.④
【答案】BC
【解析】
由韋達(dá)定理可判斷①是否正確,由用定義法判斷函數(shù)奇偶性可判斷②是否正確,由二次函數(shù)的開口方向及對稱軸方程可判斷③是否正確,由函數(shù)與方程的關(guān)系,將方程問題轉(zhuǎn)化為函數(shù)問題可判斷④是否正確.
解:對于①,方程的兩個根異號,由韋達(dá)定理可得
,即①正確;
對于②,,則
,得
,
或
,則
,顯然函數(shù)既是偶函數(shù)也是奇函數(shù),即②錯誤,
對于③,函數(shù) 在
上是減函數(shù),則
,即
,即③錯誤;
對于④,方程的根
滿足
,設(shè)
,
由題意有,即
,即
,即④正確,
即不正確的是②③,
故選:BC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標(biāo)為(c,0),且當(dāng)0<x<c時,恒有f(x)>0.
(1)當(dāng)a=1,時,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標(biāo)軸的三個交點為頂點的三角形的面積為8,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點M是PD的中點.
(1)證明:PB∥平面AMC;
(2)求直線BD與平面AMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校準(zhǔn)備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費用均為每米500元,設(shè)圍墻(包括EF)的修建總費用為y元.
(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;
(2)當(dāng)x為何值時,圍墻(包括EF)的修建總費用y最。坎⑶蟪鰕的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后擲一顆質(zhì)地均勻的骰子(骰子的六個面上分別標(biāo)有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點數(shù)分別為,記事件
為“
為偶數(shù)”,事件
為“
中有偶數(shù)且
”,則概率
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足下列3個條件:①函數(shù)
的圖象過坐標(biāo)原點; ②函數(shù)
的對稱軸方程為
; ③方程
有兩個相等的實數(shù)根.
(1)求函數(shù)的解析式;
(2)令,若函數(shù)
在
上的最小值為-3,求實數(shù)
的值;
(3)令,若函數(shù)
在
內(nèi)有零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且拋物線
的焦點恰好是橢圓
的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作直線
與橢圓
交于
,
兩點,點
滿足
(
為坐標(biāo)原點),求四邊形
面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運動員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為
,現(xiàn)用隨機模擬的方法估計該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機數(shù):
據(jù)此估計,該運動員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),曲線
在點
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為-12.
(1)求函數(shù)的解析式;
(2)用列表法求函數(shù)在
上的單調(diào)增區(qū)間、極值、最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com